EL KİTABI DİZİSİ : 5

DOĞU LADİNİ

EDITÖR
Ömer S. ERKULOĞLU

ORMANCILIK ARAŞTIRMA ENSTİTÜSÜ YAYINLARI
Muhtelif Yayınlar Serisi : 58
ÖNSÖZ

Kuzey yarı küresinde 40 muntelif türü bulunan Ladin cinsinin ülkemizdeki temsilcisi olan Doğu Ladini sadece Doğu Karadeniz bölgesinde yayılış göstermesine rağmen, aslı ve önemli orman ağaçlarımızdan biridir.

Doğu ladini konusundaki bütün yayınların uygulayıcı tarzından izlenmesinin zorluğunu da göz önünde alan Enstitümüz daha önce Kayın ve Kızılçam'da yaptığı gibi Doğu ladini için de elinde bulunan bu El Kitabını hazırlamıştır. Bu kitabı sırtçam ve diğer aslı ağaç türlerimiz için hazırlanacak eserler izleyecekler.

Doğu Ladini El Kitabının hazırlanmasında emekleri geçen Enstitümüz elemanlarına teşekkür eder, eserin Doğu Karadeniz yönetimini zor şartlarda çalışan uygulamacı arkadaşlara yararlı olmasını dilerim.

Ankara, 1989

Enstitü Müdürü

Dr. Osman TAŞKIN
HAZIRLAYANLAR

1. Doğu Ladininin Botanik Özellikleri Mahir KÜÇÜK
2. Doğu Ladininin Doğal Yayılışı Mahir KÜÇÜK
3. Doğu Ladininin Ekolojisi Emin AKGÜL
4. Doğu Ladininin Tohum Özellikleri Hasret ATASOY
5. Doğu Ladininin Fidanlık Teknigi Hasret ATASOY
6. Doğu Ladininin Doğal Gençleştirilmesi A. Kenan EYÜBOĞLU
7. Doğu Ladininin Yapay Gençleştirilmesi A. Kenan EYÜBOĞLU
8. Doğu Ladinin Meşcerelerinin Bakımı A. Kenan EYÜBOĞLU
9. Doğu Ladininde İslah Çalışmaları Ümer S. ERKULOĞLU
10. Doğu Ladininde Hasılat Doç. Dr. Osman SUN
11. Doğu Ladin Ormanlarının Zararlı Böceklerden Korunması ve Mücadele Dr. Mehmet YÜCEL
 Böceklerden Korunması ve Mücadele Dr. Mehmet ABATAY
12. Doğu Ladin Hastalıkları ve Mücadelesi
13. Doğu Ladin Odununun Teknolojik Özellikleri A. Kenan EYÜBOĞLU
14. Doğu Ladin Odununun Korunması A. Pamir ERTEN
15. Doğu Ladin Odununun Kullanım Yerleri Mustafa AKYÜZ
GİRİŞ ... 11

1 DOĞU LADINİNİN BOTANİK ÖZELLİKLERİ ... 13

2 DOĞU LADINİNİN DOĞAL YAYLIŞ .. 19

3 DOĞU LADINİNİN EKOLOJİSİ .. 27

3.1 Mekvi Özellikleri... 30

3.1.1 Denizden Yükseklik ... 30

3.1.2 Bağı ... 31

3.1.3 Meyil .. 32

3.2 İklim Özellikleri .. 33

3.2.1 Sıcaklık .. 34

3.2.2 Yağış .. 35

3.2.3 Nişî Hava Nemi (Bağı Nemi) ... 38

3.2.4 Işık .. 38

3.2.5 Rüzgar 39

3.3 Toprak Özellikleri ... 41

3.3.1 Jeomorfolojik Özellikler .. 41

3.3.2 Anataş .. 42

3.3.3 Toprağın Tipi ve Türü .. 43

3.3.3.1 Toprak Tekstürü .. 43

3.3.3.2 Toprağın Deninliği ve Kök Yayılışı .. 44

3.3.3.3 Bakırdaki Toprak ve Meşere Faktörler ... 46

3.3.3.4 Toprağın Humus Durumu ... 46

3.3.3.5 Organik Artıkların Ayırılması ve Biyolojik Faktörler 47

3.3.3.6 Toprakta Yıkanma (Elluviasyon ve Podsoiûmsü Yapları) 49

3.3.3.7 Toprağın Reniği .. 50

3.3.3.8 Toprağın Asitliği (Ph) .. 50

3.3.3.9 Doğu Ladini Topraklarında Bitki Besin Maddeleri 51

3.3.3.10 Topraktaki Organik Madde ve Azot Miktarları 52

3.3.3.11 Toprakların Tekstür ve Deninliği ile Doğu Ladinin Çap ve Boy Gelişmeleri Arasındaki İlişkiler ... 53

3.3.4 Vejetasyon Durumu ... 53

3.4 Biyotik Faktörler .. 54

4 DOĞU LADINİNİN TOHUM ÖZELLİKLERİ .. 59

4.1 Çiçek Yapısı ve Döllenme .. 61

4.2 Kozalakların Olgulaşması, Tohum Yılları ve Tohum Verimi 61

4.3 Tohum ve Kozalak Özellikleri .. 66

4.4 Kozalaklardan Tohum Çikarma ve Saklama 66

4.5 Çimlenme Kabiliyeti .. 68

5 DOĞU LADINİNİN FİDANLIKTEKNİĞİ .. 71

5.1 Fidanlık Yeri ve Toprağ 72

5.2 Ekin Teknigi, Fidan Sıklığı ve Korumâ ... 74

5.3 Şaşırma ... 77

5.4 Gübreleme .. 78

5.5 Fidan Özellikleri ... 79

5.6 Sökm .. 81
11 DOĞU LADİNİ ORMANLARININ ZARARLI BÖCEKLERDEN KORUNMASI VE MÜCADELE

1.1 İğne Yaprak ve Sürüngüce Zarar Yapanlar ... 191
 11.1.1 Ladin Örücü Yaprak Anısı ... 191
 11.1.2 Ladin Sürüngün Gazbili ... 191
1.2 Kozağıda Zarar Yapanlar ... 192
 11.2.1 Ladin Kozağı Kelebeği .. 192
1.3 Kabuk ve Kambiumda Zarar Yapanlar .. 193
 11.3.1 Küçük Orman Bahçesi ... 193
 11.3.2 Büyük Orman Bahçesi ... 193
 11.3.3 Dev Kabuk ... 194
 11.3.4 Çam Oniki Dişili Kabuk Böceği ... 195
 11.3.5 Çam Altı Dişili Kabuk Böceği .. 195
 11.3.6 Ladin Küçük Kabuk ... 196
1.4 Kabukta ve Odunda Zarar Yapanlar ... 196
 11.4.1 Ladin Teke Böceği .. 196
 11.4.2 Çam Teke Böceği .. 197
1.5 Odunda Zarar Yapanlar ... 198
 11.5.1 Sarı Gövdeli Odun Anısı ... 198
12 DOĞU LADİNİ HASTALIKLARI VE MÜCADELESLİ

12.1 Abiotik Hastalıklar ... 201
 12.1.1 Rüzgar ... 203
 12.1.2 Kar ve Buz .. 204
 12.1.3 Kış Ölümü .. 204
 12.1.4 Toprak Futubatı Fazları .. 204
 12.1.5 Kronik Su Noksanlığı .. 204
 12.1.6 Bor ve Tuzlar .. 205
 12.1.7 Akut Su Noksanlığı (Kuraklık Zararı) ... 205
 12.1.8 Güneş Yanıklığı (Kabuk Yanması) .. 205
 12.1.9 Don .. 206
 12.1.9.1 Don Ölümü .. 206
 12.1.9.2 Çiplak Don .. 206
 12.1.10 Besin Maddesi Yetmezliği .. 207
 12.1.11 Besin Maddesi Fazlalığı ve Toprak Zehirlenmesi 208
12.2 Biotik Hastalıklar .. 209
 12.2.1 Parazit Bıçaklar .. 209
 12.2.2 Mozaik Vırus Hastalığı ... 209
 12.2.3 Bakteriyel Hastalıklar .. 210
 12.2.4 Fungal Hastalıklar .. 210
 12.2.4.1 Fidanlık Hastalıkları .. 210
 12.2.4.2 Tohum Hastalıkları ... 212
 12.2.4.3 Pas Hastalıkları .. 212
 12.2.4.4 İğne Yaprak ve Sürüngün Hastalıkları ... 212
 12.2.4.5 Gövde - Kambium ve Kabuk Hastalıkları .. 213
 12.2.4.7 Gövde ve Kesilmiş Odunlarda Renklenmesi 213
 12.2.4.8 Odun Tahripçisi Mantarlar .. 214
13.1	Ladin Odununun Makroekoloji Özellikleri
13.2	Ladin Odunun Mikroekoloji Özellikleri
13.3	Ladin Odunun Genişletme Özellikleri
13.4	Ladin Odunun Sertlik Özellikleri
13.5	Ladin Odunun Su ile olgu Özellikleri
13.6	Ladin Odunun Su ile Denge Özellikleri

TOPLAKAYNAKA
GİRİŞ

Ancak, bu kitabin, bugüne kadar Doğu ladının ilişkin olarak yapılanbirlerce saygılı yayınların kısa bir özel olarak, meslektahlarımıza uygulamalarında yol gösterceğini ve zarar sağlayacağı düşünce ve dileğindeyiz.

Ankara, 1989

Editör
Ömer S. ERKULOĞLU

12
Mahir KÜÇÜK

1
doğu ladininin
botanik
özellikleri

Doğu Ladininin Dişi ve Erkek Çiçekli Dalları
Foto: Ö. S. Erkulağlu
1 DOĞU LADİNİNİN BOTANİK ÖZELLİKLERİ

Doğu ladini (*Picea orientalis* (L.) Link.) Gymnospermae'lerin Coniferae sınıfı, Pinaceae familyasına dahil olup sivri tepe, dolgun ve düzgün gövdeler yapan, 40 - 50 m bazen 60 m kadar boyanabilen 1.5 - 2 m çapa ulaşan piramit görünüşlü, sık dallı (serbest büyüyenler dibe kadar dallı) bir evcikli, birinci sınıf orman ağaçdır. (KAYACIK 1965, DAVIS 1965, GÖKMEN 1970, ANŞIN 1988).

Kabuk genç gövdelerde genellikle açık renkli ve düzgün, yaşlı gövdelerde koyu renkli ve çatlaklidir. Dallar genel olarak sık bir vaziyet te hemen bütün gövdeye yerleşmiş ve genç iken yukarı doğru sonra- ri düz ya da aşağıya doğru sarkmış durumdadır.

Karmeri kırmızı rengindeki erkek çiçekler; eliptik, 1 cm boyunda, birçok pembe pullarla örtülü kozalakçık halinde ve dalların ucundadır. Polenlerin yan tarafında iki adet hava keseciği vardır. Dişi çiçekler

3 - 4 mm uzunluğundaki küçük tohumlar kahverengi - siah renkte olup, ekim ayında olgunaşmaktadır.

Kanat, tohumu tümüyle değil tek taraflı kaşık gibi kavrınmış ve ondan kolaylıkla ayrırlar (ANŞIN 1988).

ilk yaşlarda büyümesi çok yavaştır.

Odunu-reçine kanal içeri ve göknar odununa nazaran parlaktır (MEREV 1984).

KAYNAKÇA

2 DOĞU LADİNİN DOĞAL YAYILIŞI

Doğu Ladini yerel bir yayılışa sahiptir. Kafkasya ile Kuzey Doğu Anadoluda 40° 23’ - 43° 50’ enlemleri ile 37° 40’ - 44° 13’ boylamları arasında yayılışını yapar (Harita 1).

Doğuda Posof havzasına, Çoruh vadisi ile de Yusufeli'nin doğusundaki yüksek kesimlere kadar sokulur. Şavsat - Ardanuç - Meydançık - Veliköy civarında geniş sahalarda saf olarak bulunur. Trabzon civarında saf ormanların 900 - 1000 m ıerden sonra başlamakta, Meryemana yöresinde 1500 - 1650 meyere kadar çıkılmaktadır (ATALAY 1983).

Doğu Ladini Artvin (Hatila - Genye, Saçırka - Lekta, Ardanuç - Dudumel, Üçsu - Sarolluk, Hotboğazi, Üçkün, Karanlık meşe, Melet ormanları), Rize (Cimil, Kurrîyiseba, Palovîli, Kaçkar ormanları), Trabzon (Hamsiköy, Karahava, Meryemana, Sürmene ormanları), ve Giresun (Taflandare, Kesek, Sofulu, Bicik, Hasançal, Kemezer, Kızılev,
Harita 1 : Doğu Ladinin doğal yayılışı ve Türkiye'de denize doğru sarktığı yerler (Kayacık 1960, Saarçioğlu 1969)
Çizelge 1. Ladin Ormanlarının Bölge Müdürlüğüne Göre Alansal Dağılımı
(Türkiye OrmanEnvanteri, 1980)

<table>
<thead>
<tr>
<th>Bölge Merkezi</th>
<th>Normal Koru (ha)</th>
<th>Bozuk Koru (ha)</th>
<th>Toplam (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giresun</td>
<td>19294</td>
<td>9424</td>
<td>20718</td>
</tr>
<tr>
<td>Trabzon</td>
<td>44410</td>
<td>22644</td>
<td>67054</td>
</tr>
<tr>
<td>Artvin</td>
<td>17967</td>
<td>21424</td>
<td>39391</td>
</tr>
<tr>
<td>Erzurum</td>
<td>690</td>
<td>106</td>
<td>796</td>
</tr>
<tr>
<td>Türkiye Toplam (ha)</td>
<td>82301</td>
<td>53588</td>
<td>135359</td>
</tr>
</tbody>
</table>

- Parantez içindeki değerler Bölge Müdürlüğü içindeki toplama oranın yüzde oranlarını göstermektedir.

Ladin, yağlı, nisbi nem yüksektir, sisli ve su açığı olmayan nemli bölgeleri sevmektedir. Karadeniz arında özellikle günümüz yamaçlardan kaçınırlar, kuzey yamaçlarda sarıçam yer yer de göknarla karışık bir şekilde girmektedir (ATALAY 1983).

Doğu Ladini, Ülkemizde 135.959 hektar saflı meşcerelere sahiptir. Yaklaşık 200.000 hektar alanda da yapraklı ve diğer iberlerle karışık bir şekilde girmektedir.

Doğu Ladini orman alanlarının orman bölge müdürlüklerine göre dağılışı çizelge 1 de verilmişdir.

KAYNAKÇA:

Emin AKGÜL

3 doğu ladininin ekolojisi

Meryemana Araştırma Orman'ında Yol Kenan Toprak Profili
Foto: Ö. S. Erkuloğlu
3 DOĞU LADİNİNIN EKOLOJİSİ

Ekoloji canlılardan, içinde yaşadıkları "ortamlar"la olan ilişkileri inceleyen bir ilim dalıdır. Teknolojinin hızlı bir şekilde ilerlediği bir dönemde bugün ortam ve çevre sorunları da artmış ve karmaşık bir durum almıştır. Bu bakımdan insan yaşamını yakından ilgilendiren bu konu yani "Ekoloji" her geçen gün güncel bir kazanmaktaadir.

General olarak, "Orman" denilince ağaç toplulukları ağaç gelir. Fakat bunun bir ekosistem yanı "Orman Ekosistemi" olarak düşünülebilir. Orman, birlikte, karşılıklı etkileşim içinde bulunduğu ötekisi bitkiler, mikroorganizmalar, hayvan ve hayvancıklarla toprak, iklim v.s. faktörlerin de içinde bulunduğu bir "yaşam birliği" şeklinde ele alınmasıdır. İşte bu sebeplerdir ki, Doğu Ladininin teşkil ettiği topluluklar ilişkin ekolojik özellikler, ana hatları itibariyle burada incelenecektir. Başka bir ifade ile burada doğu ladininin oluşturduğu meselerle, içinde yaşadığı ortama ilişkin klimatik, edafik (toprak özellikleri), fizyografik (yükseklik, bakı, eğim, arazi yüzü şekli) ile flora, mikro - makro organizmalar gibi bilyotik faktörlerin karşılıklı etkileşimlerini, incelemenektir. Bu etkileşimlerin (ekolojik özellik) çok iyi bilinmesi duru-
munda, ladine ait amenajman ve silvikültür uygulamalarında verilece
kararların daha isabetlı olacağı şüphesizdir. Bu bakımdan, bilhassa
işlete Şeflerinin ormanda yaptıkları çalışmalar sırasında, hemen açıp bakabileceği bir cep kitabında bulunması ve gerekli özet bilgilerin burada yer almasına özen gösterilmistir. Ancak, bu bilgilerin değişik yer ve zamanlardaki kullanımlarında, yeniden gözden geçirilip, ye
niden yorumlanmasında zorunluluk vardır. Zira ekolojik uygulamala

3.1. Mevki Özellikleri

3.1.1. Denizden Yükseklik

Doğu ladidine ilişkin olarak toprak araştırmalarında deneme sa
hası olarak seçilmiş bazı meşcerelerin denizden yükseklikleri: Giresun'da (Yavuzkemal 1520 ve 1660 m, Bicik 1530 ve 1760 m), Trabzon'da (Meryemana 1620 m, Kapıköy 1010 ve 1120 m, Santa 1360 ve 1460 m, Uzungöl 1240 ve 1330 m, Elevit 1400 m), Artvin'de (İpedüzü 1200 ve 1600 m, Atlı 1740 ve 1820 m, Tütüncüler 1665 m, Kömürsürtü 1650 m, Karanlıkmeşe 1600 m, Veliköy 1500 m, Karagöl 1600 m, olar

Bu yükseklik kademeleri, 4'ü açık türünün (ladin, kayın, göknar, sarçam) optimum yayılış sahaları olup, yağışca zengin, kısların sert 30

3.1.2 Bakı

Doğu Karadeniz Bölgesinde çok der bir sahil şeridi, düzlık görünümütedir. Öte yandan sıradanlıklar; doğru doğru artan yüksekliklerle yöre morfolojik bakımdan yüksek dağ karakterini vermektedir. Mevcut nehir ve sıkça görülen dereler, dik ve darın vadiler halinde doğrudan Karadeniz'e ulaşırlar. Bu durum, Doğu Ladinin yayılışı içinde hayli değişik bir tablo yaratır. Doğu Karadenizde uzanan silsile esastan kuzey ve güney bakırmı ortaya koyarken, kuzey bakı muhtevası içindedir. Kuzey bakıda koyu görelenen vaka ile, her yöndeki tali bakılar fazla önemli değildir. Her iki yönden Karadeniz'e ulaşan toprağın kuzeyden (Karadenizden) gelenen yağışların tutulmasınıdır. Bu genel yağış rejimi içinde toprağın yatışmesi açısından tali bakılar, toprak derivinini elverişli olduğunu kısımlarda önemlidir fark göstermektedir. Toprağın sığ ve elverişsiz olduğu gü-
ney mailelerde ladın meşcereleri daha zayıf (çap, boy ve gövde kalitesi olarak) gözlenmektedir (Bicik'te olduğu gibi). Toprağın derin olduğu güneye bakan kısımlarda ise (Yavuz Kemal ve Atıla'da) çok iyidir (Akgül, 1975).

Doğu ladının yayılışında, kuzeye bakan yamaçlarda çoğunlukla, toprak şartları iyi olan öteki bakımlarda da genelde iyi vasıflı meşcerelerin bulunması, buralarda yeterli kadar rutubetin varlığı ile izah edilmektedir. Öte yandan, ladının iyi gelişmesi için yüksek hava rutubetine ihtiyacı bulunduğu, bundan dolayı da yağmur ve sisin fazla görülüğü yüksek ve kuzeye bakan yerlerde iyi gelişme gösterdiği, ancak bunların, ince dallı tipler (kar tutması için) olduğundan ifade edilmektedir (Saatçioğlu, 1976). Böyle yayvan olmayan ince dallı tipler, kaba ibreli ve hızlı büyüyen ladinlere nazaran, kar baskıına ve donlarda daha dayanıklı olup, ışıkta da daha fazla yararlanabilmektedirler. Ayrıca sıkçağın bu meşcerelerde ioprağa ulaşması daha elverişlidir.

3.1.3 Meyili

Diğer taraftan, ladinde kök teşekkülü çok ilginçtir. Yan köklerin genellikle çok kalin ve kuvvetli olması dikkat çekici meyillerinde bile, ağa-
cin toprağa iyi bir şekilde tutunmasını sağlamaktadır. Biçık'te % 40 meyilli bir yamaçta ladınlardaki büyük bölümü yan köklerin toprağın kalınlığı, ana gövdeye yakın kalınlıkta olduğu gözlenmiştir. (Akgül, 1975). Bu ana yan kökler bazan 8 - 10 m'ye kadar uzanabilmekle, bunlardan çıkan sekonder köklerden de çok fazla miktarla saçak kök teşekkül etmektedir. Yüksek ve fazla meyilli bazı ladınların mantıkalarında ise meşcere fırlarında “Pala Teşekküllü” görülmektedir. Ardahan İşletmesi Kömür Sırt mevkiiindeki (1530 ve 1650 rakımlı, % 70 ve 60 meyilli) meşcere fırlarında fırların % 70 - 80' tine pala teşekkülüne maruz kaldığı ve bu duruma hemen hemen her meşcerede az çok rastlandığı görülmektedir. Pala teşekkülünün yüksek rakımlardaki aşırı kar yağışları sonucu dik meyilli meşcere fırlarında görülen bir deformasyon olduğu bilinmektedir.

Bu durum ladınlarda silvikültür işlemleri dikkatle yapılması gerekmektedir. Meşcere kapalılığı iyi ayarlanırsa, fırlardan her bakımdan iyi bir dayanışma sağlanır pala teşekkülüne karşı kalmaktadır. Bu dayanışma temin edilmese, daha kötü, meşcre kar devriklerine de maruz kalabilir.

3.2 İklim Özellikleri

- Doğu Karadenizde sahildeki yağış miktarları entropolo edilemek suretiyle ladınlının yağış alana teşhis edildiğinde yıllık yağış ortalamalarının Canik Dağlarında 1190 mm, Zigana'da 1500 mm, Rize Dağlarına 33
da 3000 mm (Sevim, 1962), Giresun - Yavuzkemal'de (Meteoroloji gözlem istasyonu var) ise 1165 mm, olduğu görülür.

3.2.1 Sicaklık

Doğu Ladininin önemli yetişme yerlerinden sayılan Trabzon - Meryemana'da mevcut 22 yıllık meteorolojik gözlem değerlerine göre (1100 m'de); yıllık ortalama sıcaklık 9.1°C, en sıcak ay ortalaması 16.0°C ile ağustos, en soğuk ay ortalaması 1.4°C ile ocak ayı olarak tespit edilmiştir. Ayrıca bu süre içerisinde en düşük sıcaklık Ocakta -15.1°C, en yüksek sıcaklık ise 38.9°C olarak kaydedilmiştir. Bu yörede yıllık ortalama donulm (sıcaklığın 24 saatte 0°C'ın altında kaldığı gün sayısı) günlerin sayısı 97.5'dir. Öte yandan, yearının karla örtülü olduğu yıllık ortalama gün sayısı 83.2'dir (Atasoy ve arkadaşları, 1985). Bütün bu bilgiler Doğu Ladininin yayılış sahasına teşvik edilemez. Ancak, genelde fikir verebilir.

3.2.2 Yağış

Doğu Ladininin esas yayılış ve optimum miktarları, Doğu Karadenizin yağışca zengin, rutubet ormanlarının yoğun olduğu yüksek basamaklardır. Ancak, dağların içe bakan (Zigana ve Ardanuç'ta) nisbeten kurak kısımlarda da az çok yayılışa sahiptir. Bundan, ladının rutubet isteğinin yüksekliğinde sert kışa dayanıklılığı yanında icabında kuraklığa dayanabilme gücünün de olduğu sonucu çıkarabilir (Saatçioglu, 1976).

Doğu ladını miktarında yıllık ortalama yağış 700 - 2000 mm arasında değişmektedir. Yağışların yıl içerisinde ayılar ve mevsimlere dağılışı fakirdir. Örneğin, Meryemana - Trabzon yıllık toplam yağış 906 mm ise bunun % 39.8'i nisan, Mayıs ve Haziran'da, % 23.9'uтемmuz, ağustos ve Eylül'de % 20.7'si ekim, Kasım ve Aralık'ı % 15.6'sı da ocak, Şubat, Mart aylarında yağmıştır. Görüldüğü üzere yıl içinde Meryemana miktarlarında en fazla yağış İkbaharda, en az ise kişin düşmektedir (Atasoy ve Arkadaşları, 1985). Sıra dağların kuzeye bakan kısımların yağmuru ve sis miktarlarından daha fazla yararlanır. Kuzeyden gelen bulutlar, yüksek dağları aşmadan kuzey yamaçlara yağmurları birakır. Aynn şekilde bölgenin kuzeye bakan kısımlarında, yoğun sis te-
şekülatı mevcuttur. Bu bakımlardan yörede içe bakan kısımlar daha az yağış almaktadır.

Öte yandan, yıllık ortalama yağış miktarlarında zaman zaman yıl-
tarâ göre önemli sapmaları da rastlanmaktadır. Örneğin Rize'de yıllık
yayış ortalamanın 1700 - 4000 mm arasında değiştiği görülüktedir (Atalay, 1985).

Bütün bu ifadelerden, Doğu Ladinin yayılışınıntıkasında yağış-
enin, yıl içersinde mevsim ve aylar itibariyle muntazam bir dağılış gös-
termemekle birlikte miktar olarak yetenli olduğu anlaşılacaktır. Yıktar-
da, ladinin yayılışında önemli bir yeri olan Meryemana ve çevresi için
verilen örnekte görüldüğü üzere, yıl içerisinde yayışın büyük kısmın
aşağı yukarı vejetasyon devresine isabet eden ve su açığı bulunmadığı
görüldüğünü. Bu örnek, Doğu Karadeniz'de öteki ladin mıntıkaları için de bir fikir
verebilecek niteliktedir. Ancak, Karadeniz Bölgesinde yağışların bütün
başlanırın Sonap'ta 676.9, Samsun'da 731.5, Ordu'da 1138.6, Trab-
zon'da 850.6 ve Rize'de ise 2510.3 mm olarak artığı bilinmektedir. Bu,
doğudan doğuya dalgaların doğuya gidildikçe artan yükseklikleriyle il-
gili bir husustur (Sevim, 1962). Bölgede ekstrem yaz kuraklığı görül-
memektedir. Buna göre yörede, müheldi ve hum ve yer yer de perhu-
mid iklim şartları hüküm sürmektedir. Doğu ladinin optimal yetişme
alanlarında, yani yaklaşık 1000 - 1200 m'den itibaren kuşlar şiddetli olur
ve kalın kar örtüsü ile kaplanır. Sahilden yükseklerde doğru gidildikçe
kar yağışı ve karla örtülü gün sayısı artmaktadır. Örneğin Kalkande-
re'de kar yağışı gün sayısı 7.2, karla örtülü gün sayısı 25, en yüksek
kar örtüsü 160 cm, Kaptanpaşa da ise bu değerler sıra ile 14.6, 45 ve
197 cm dir (Atalay ve arkadaşları, 1985). Mıntikanın önemli bir özelliği
de çok şişi ve bulutlu olupﳎ. Yıllık kapalı gün sayısı ortalama 160 dir
(Kayacık, 1952).
Şekil: 1 Meryemana Ormanının 1100 m Yükseltisi için Thornthwaite Metoduna Göre Su Bilançosu Grafiği

Her mevsim yağışın varlığı ve su açığının bulunmayışı, bölgenin herdem yeşil kalmaması sağladığı gibi, genelde yere topografyasının çok engebeli olması rağmen, ekstrem yerlerin dışında erozyon olayına da rastlanmaktadır. İklimin bu özelliğinin, olsu bitkilerin hızlı gelişmelerine neden olduğu düşünülürse, Ladinde uygulanan doğal ve yapay gençleştirme çalışmalarda çeşitli problemlerin ortaya çıkacağı tabiildir.
3.2.3 Nisbi Hava Nemli (Bağlı Nem)

Sahilin üst zonlarında nisbi nemdeki günlük oynamalar daha fazladır. Örneğin Kaptanpaşa'da - Çamburnu yaz ortası ile sonbahar başı arasında saat 7'de nisbi nem % 95, öğleden sonra % 70, saat 21'de ise % 95'in üzerine çıkmaktadır (Atalay ve arkadaşları, 1985). Öte yandan, Meryemana'da yıllık ortalamada nisbi nem % 76'dır. Temmuz ve Ağustos'ta en yüksek (% 82), Ocak, Şubat ve Mart'ta (% 70 ile) en düşük (Atasoy ve arkadaşları, 1985). Meryemana'da yıl içerisinde en düşük (% 11 - 20) nisbi nem değerleri genelde kış aylarında, donlu günler, ilkbahar ve sonbahar da güney rüzgarların estiği zamanda rastlantıdaır.

Bu ifadelerden, Doğu Karadeniz bölgesinde nisbi hava neminin, vejetasyon devresinde bitkilere yetecek ölçüde olduğu sonucu çıkılabilmektedir. Bu da Doğu Ladininin gelişmesine uygun düşmektedir.

3.2.4 Işık

Öte yandan, Doğu Ladini meşcerelerinde kapalılığın kırıldığı yerlerde, altta süceyrat ve otsu bitkiler ladin gençliğinden önce sahaya gelip yerleşerek, yabanlaşma denilen olay ortaya çıkmaktadır. Meşcere ön kapalı ortamdan, birden bire fazla ışığa açılması, yabancı bitkileri hızla harekete geçirmekte ve ladin gençliği bunların arasında kaybolmaktadır.

Yukarıda belirtildiği üzere, ladinin ilk yıllarda yavaş büyümesi ve sipere ihtiyaç göstermesi nedenlerile, silvikültürel müdahalelerin ladinin yetişme muhitinin elverişsizliği nispetinde ışık ihtiyacı artmaktadır (Saatçioğlu, 1976).

3.2.5 Rüzgar

Rüzgar, transpirasyonun artırılması, çeşitli mekanik zararların meydana getirilmesi, tozlaşma ve tohumların dağılması gibi olayları
meydana getiren önemli bir ekolojik faktördür. Öte yandan, rüzgârın soğuk ve sıcak hava kütelerinin taşınması, su ilişkilerini ve ışık şartlarının karıştırmak suretiyle sıcaklıkların değiştirilmesi sonucu yağışlara neden olması gibi işlevleri vardır (İrmak, 1966).

Yukarıda belirtilen hususlar özetlenirse, rüzgar, orman varlığının doğrudan ve dolaylı olarak olumlu - olumsuz yönde etkilemektedir. Ladinin yüksek kısımlarındaki durumu düşünülürse, karlar tarafindan örullen fidekilerin, karların rüzgarla savrulup, açığa çıkması sonucu dondan zarar gördüğü sıkça rastlanan bir olaydır. Bilhassa, orman sınırına yakın ve çevresi açık olan üst yamaçlarda bu nedenle çok rastlanmaktadır.

Doğu Karadeniz bölgesinde hakim rüzgarlar genel olarak güney, güneybatı ve kuzey doğudan gelmektedir (Atalay, 1984). Ancak, bölgede yerel olarak az da olsa bazı farklılıklar görülmektedir. Örneğin,
Trabzon'da hakim rüzgar, güney, güney batı, kuzey doğu, kuzey batı yönlerinden esmektedir (Saalçıoğlu, 1947). Rize'de yapılan meteorolojik gözlemlere göre her mevsim güneybatı rüzgarlar başını durumunda olup, daha sonra kuzey doğu, güney ve kuzey rüzgarlar gelmektedir.

Bu bilgilenin ışığında, rüzgarnın Doğu Ladıni meşcereleri üzerindeki etkileri incelenirse, bunlar küçümsenemez derecededir. Murgul (Göktas) bakırfabrikalarındı ğı bırakılan S02 gazının rüzgar tarafından Murgul suyu vadisi boyunca yaklaşık 20 km mesafedeki ladin ormanlarına sürüklenmesi ve bunun ormanda yaptığı tahribat günellerini korumaktadır. Kuzeyden esen hakim rüzgar S02 gazını etrafı dagılarla çevrili vadi boyunca sürükleyerek ladin ormanları üzerinde yoğunlaştırmaktadır. Bu durum, özellikle yaz - kış yeşil kalan iğneleri zararlı olmaktadır. Murgul bakır fabrikasının kuruluşu sırasında hakim rüzgarlar ve yörenin topografik konumu dikkate alınıyordu, bugünkü sorunlar yaratılmamış olacaktı. Söz konusu ladin meşcerelerinin gençleştirilmesi problemini gündemde olup, S02 gazının bertaraf edilmesi üzerinde çalışmalara sürdürülmektedir.

3.3 Toprak Özellikleri
3.3.1 Jeormorfolojik Özellikleri
Doğu Ladınin yayılış minitkasında uzanan sıradaglar (Pontitler), batidan doğruya gidildiktece artan yükseklikleri ile dikkat çekerler. Bunlar

Sonuç olarak, Türkiye'de Doğu Ladın mintikasında, kontakt metamorfik kütleleri ihtiva eden yerler ile üst kratese formasyonlarını ait seriler ve magmakik kütle serileri hakim bulunmaktadır (Akgül, 1975).

3.3.2 Anataş

Doğu Karadeniz mintikasında ladinin yayılış gösterdiği kısımlarda genellikleмагmakik ve metamorfik kayaçlar yaygın. Bunlardan başka kalkerler, konglomeralar, kum taşları da rastlanmaktadır. Anataş olarak Giresun'da (Yavuzkemal, Bıçık) andezit, granit, diyabaz, agglomerar, serpentin ve volkanik tüfeller; Artvin yılında ise (Karagöl, Veli-

3.3.3 Toprakın Tipi ve Türü

3.3.3.1 Toprak Tekstürü

Doğu Ladini'nin yayılış mıntıkasının hemen tamamında hafif topraklara rastlanması, bu türün toprak isteği yönünden hayli ilgi çekici görülmektedir. Topraklarında % toz ve % kil miktarlarının % kuma nazaran daha fazla olduğu lesbil edilen Tepedüzü ve Karanlıkmesedeki bazı mesereleerde ladinlere ait çap ve boy gelişmelerinin yeterli olmadığını sonucuna varılmıştır. Bu açıdan, Doğu Ladini'nin havalanması iyi olan, hafif topraklar (Kumlu ve balçık) daha fazla tercih ettiği söylemek mümkündür (Akgül, 1975).

3.3.3.2 Toprağın Derinliği ve Kök Yayılışı

Doğu ladini'nin yayılış mıntıkasında toprağın derin ve orta derinlikte olduğu daha önce belirtilmiştir. Genelde granitten oluştuğu için toprağın kumu ve gevşek yapıcı olması nedeni ile köklerin daha derinlere ulaşabileceği akılda getirileceği gibi bir durum, gerçek böyle değildir. Yörede yapılan tüm incelemeler Doğu Ladini'nin siğ köklü olduğunu göstermektedir.

Doğu Karadeniz'de ladin, hemen tüm sahalarda 60 cm dahilinde yoğun kök yayılışı yapmaktadır. Bilhassa, toprak yüzeyinden itibaren ilk 5 - 10 cm içerisinde saçak kökler o kadar kesitleri ki, kazma ile çukur açmak bile güçlükle yapılabilimektedir (Akgül, 1975).

Doğu Ladini kök boğazından itibaren çok sayıda yan kökler gelişir. Bunların kalınlığı bazan ana gövdeye yakın, uzunluğu da 8 - 10 m'ye ulaşır ve az - çok yatay olarak yayılır. Ladinde genel olarak derine giden ana kök bulunmaz. Bu kuvvetli ve kalın yan kökler bilhassa 44
dik mayillerde ağacın toprağa iyi bir şekilde tutunmasını sağlarken, bunlardan çıkan sekonder köklerle çok fazla siyadaki saçak kökler gayet kesil şekilde toprağı sarmaktadır.

Öte yandan, toprak derin bile olsa Doğu Ladini kökleri genellikle aktif fazla 1-1.5 m derine inmekle ve derine inlikte de kök kesafeti sü- rratle azalmaktadır. Ancak, toprağın ilk 10 - 15 cm'inde kök kesafeti en fazlazdir (Akgül, 1975).

![Şekil: Doğu Ladini köklerine ait orijinal bir şema.](image-url)
Esasen, ağaç türlerinin kök şekilleri irsel özellikler yanında, ağaçın içinde bulunduğu yetiştirme muhiti şartlarının da geniş ölçüde etkisi altındadır. Bu bakımdan her ne kadar irsellaşanların sığ köklü olduğu varsayılan ise de, bazen yapısı ve iklime bağlı olarak daha derine giden bir kök sistemi geliştiği de görülebilimektedir (Sevim, 1961).

3.3.3.3 Bakırdaki Toprak ve Meşcere Farklılıkları

Yörede iyi bonitette meşcerelerin daha fazla görüldüğü kuzey yamaçlarında ladın daha çok tahrip edilmiştir. Çünkü vaktiyle yaygın olan "Hartama" çatı örtü malzemesi - imalatinin köylülerce kaçak olarak kuzey yamaçlarında yapılmış bu sonucu doğurmuştur. Bu durumda düzgün gövdeli, elit ağaçlar tercih edilmiştir.

3.3.3.4 Toprağın Humus Durumu

Doğu Karadeniz Ladınıntıkalarda toprağın yıkanması ve asitlikte ilgili olarak, humus formları önemli bir husustur. Toprağın yıkanması ve asitlik konulun esasen toprağın yüzeyinde biriken organik artıklarla yakından ilgilidir (Akgül, 1975). Orman topraklarının fiziksel ve kimyasal özellikleri humus muhlevasına göre değişir (Sevim, 1960). Ölü örtünün ayrılması bu yönden büyük önem taşır. Ayırışan organik artıklar (humus teşekkürü) toprağa kıvrıktı strüktürü verir, su tutma özelliğini ar-

Ölü örtünün ayrışma hızı, ışık, nem, toprak asitliği ve mikrobiyalle aktivite gibi yetişme nüfusunun klimatik ve edafik şartlarıyla, meşcere kalınığına göre geniş ölçüde değişmektedir.

3.3.3.5 Organik Artıkların Ayrışması ve Biyolojik Faktörler

düşüklüğünden organik artıklar ayrıştırıcı bir biyolojik ortam teşekkür edemekte, sonucu organik artıklar birikmekte.

Artvin - Atıla'da her hangi bir silvikültürel müdahale olmamak, fazla kapalı ladın meşcereleri altında 4-5 cm kalınlığında çürüntülü humus tesbit edilmiştir (Akgül, 1975). Burada bol yağışla beraber, ısı ve ışık faktörlerinin aziği nedeniyle mikrobiyal faaliyet engellenerek, ayrımsı önlenmektedir. Yörede bol yağışın yanında, ısı ve ışığın daha elverişli olduğu güney ve güney - batı yamaçlarında, sözü edilen organik madde birikimlerine çok daha az rastlanmaktadır (Giresun - Bicik gibi).

Sonuç olarak, Doğu Karadeniz ladinmintıkası için şu ifade etmek lazımdır ki, ladin meşcerelelerinde, genç yaşlardan başlamak suretiyle bilinçli ve bilinçli silvikültürel çalışmalarının yapılması, ham humus veya çürütülü humus birikimlerini zararlı olmaktan kurtaracaktır. Zira orgânik artıkların iyı ayrışması sonunda meydana gelen iyi kalitedeki humus tarafından toprağa çeşitli besin maddeleri ve bilhassa açağ ve rizomin korunacaktır. Zira organik artıkların iyı ayrışması sonunda meydana gelen iyi kalitedeki humus tarafından toprağa çeşitli besin maddeleri ve bilhassa açağ ve rizomin korunacaktır.

3.3.3.6 Toprakta Yıkanma (Elluviasyon ve Podsolümsü 'aplar)

Doğu ladininin yayılış mintıkasında belirli şartlarda görülen ve meşcereinin geleceği için olumsuz sonuçlar doğuran organik madde birikimi veya ham humusun neden olduğu diğer bir olumsuzluk da toprakların yıkanması (Podsollaşma) olayıdır.

Podsollaşma, bu yörede toprak üzerinde yatayan birikmiş organik artıkların oluşan organik asitlerin, yağışların etkisi ile aşınmaları süreyenmesi ve bu arada A₂ horizonunun altında A₁ yanahitma horizonunda mevcut (Ca⁺⁺, Mg⁺⁺, K⁺ ve Na⁺ katyonları ile Demir ve Aliminyum) bir takım bitki besin maddelerini de sürükleyip aşınmaları (B horizontu) taşımasıdır. Diğer bir ifade ile buna toprağın yıkanması ve aşınma meside denmektedir. Yıkanma sırasında topraktaki (A₂ horizontunda) değişebilir bazılar ile demir ve aliminyum bileşiklerinin yakınp gitmesi ve aşınmadan sonra B horizonunda birikmesi, üstteki A₂ horizonunun toprak renginin soluklaşmasına ve genelde toprağın fiziksel ve kimyasal özelliklerinin bozulmasına neden olmaktadır.

Ülkemizde pek rastlanmamakla birlikte, yıkanmanın ileri safhasında Demir- Aliminyum bileşikleri, mütaddele bazılar, humus madde-leri ile toz ve kî tanecikleri B horizonunda birikerek seri ve geçirimsiz

Burada belirtilmelidir ki, ladinin sık köklü olması ve beslenme- sıni ağırhol olarak üst toprağ (organik maddein fazla olduğu kısım) dayandırmasının önemli bir nedeni de, iklim ve toprak özelliği sonucu oluşan yakınma oludur. Başka bir ifade ile toprakta yakınma olayı fiz- yolojik sıklık yaratmakta, toprak profiliinde besin maddesi dağılımını bozmaktadır.

3.3.3.7 Toprağın Rengi

3.3.3.8 Toprağın Asitliliği (pH)

Doğu Ladininin yayılış sahası topraklarında pH çoğunlukla 5.5 - 6.5 (orta derecede asit) arasında değişmektedir. Ancak bazı yörelerde (Şavşat, Ardanuç ve Sürmene) pH (6.5 - 7.5) zayıf asit ile nötr arasında değerlerde olmaktadır. Yörede 3.77 (Bicik) ve 7.70 (Ardanuç) gibi 50

Diger taradaki, yörede yağışlar dışında toprak pH'sını etkileyen, ki- reç muhtevası, toprak tipi, bitki ortusu ve meşcerelere uygulanan silvi- kültürel işlemler gibi hususları da düşünmek gerekktedir.

Doğu Ladini topraklarında üst katmanlar daha asit olup, derine doğru zayıf asitliğe dönüşmektedir. Bu durum, normal olarak üst ka- manlar da yanmanızın daha fazla olduğunu, alt katmanlara indükçü azaldığını göstermektedir. Sonuç olarak, az da olsa şiddetli asitik de- gerler (pH = 3 - 4) alan topraklar mevcut olmakla beraber, genellde yö- re toprakları ertə derecede asit olup, ladinler 5.5 - 6.5 pH'da optimum gelişme göstermektedir (Akgül, 1975).

3.3.3.9 Doğu Ladini Topraklarında Bitki Besin Maddeleri

Ladin topraklarında bitki besin maddelerinin başlıcalarını tesbit edil- miştir (Akgül, 1975). Buna göre bitkinin yararlanabileceği Ca, Mg, K, Na ve H ile N ve P'un deşifçik yöreler için topraktaki miktarları ve birbir- lerine olan ilişkileri incelenmiştir. Doğu Ladini topraklarında bitki tara- findan yararlanabilir haldeki en yüksek miktar H'ne aittir. Yanı yukarı- da sayılan katyonlardan H'yıkanmanın bir sonucu olarak toprakta en fazla bulunmaktadır. H'den sonra Ca miktarı olarak en büyük değere sahiptir. Daha sonra, sırasıyla Me, Mg, K, Na gelmektedir. Öte yandan, tüm Doğu Ladini topraklarında Ca miktarları profil dahilinde derine doğru gidildikçe artarken, Mg, K ve Na miktarlarında büyük bir farklılık görülmemektedir. Ancak, daha önce sözü edilen katyonlardan H miktarları...
üst katmanlarda en yüksek değerleri alırken, alt katmanlara doğru azalmaktadır (Akgül, 1975).

Öte yandan, asit topraklarının teşkekülünde etken olduğu kabul edilen saf ladin meşcerelerinin, yapraklı türlerle karışık meşcerelere dönüştürülmesi; arzu edilmeyen asitik toprakların normal pH değerlerine getirilmesinde yararlı olacağı şüphesizdir.

3.3.3.10 Topraktaki Organik Madde ve Azot Miktarları

Doğu Ladinin topraklarında organik madde miktarı, çelişti katmanlarda % 0.026 - 1.363 arasında değişmektedir. Bu miktarlar normal olarak toprak yüzeyinden itibaren derine doğru azalmaktadır (Akgül, 52

Diğer taraftan, Doğu Karadeniz ladin miktarlı topraklarında azot (N) miktarları, esas kaynağı olan organik maddeye bağlı olarak üst katmanlarda yüksek, alt kısımlara inildikçe düşmektedir. Örneğin Ardanoç - Tepedüzü topraklarında toplam azot miktarları yüzeyden itibaren % 0.171, 0.108 ve 0.064 olarak tesbit edilmiştir (Akgül, 1975). Bu durum, daha önce ifade edilen genel olarak ladin topraklarında genel olarak N miktarları düşüktür. Ladinlerin, N'un nisbeten fazla olduğu üst toprakta (A horizonunda) yoğun kök sistemini gelişmesinin bir sebebi olduğu daha önce ifade edilmişdir.

3.3.3.11 Toprakların Tekstür ve Derinliği ile Doğu Ladının Çap ve Boy Gelişimleri Arasındaki İlişkiler

Doğu Karadeniz'de, ladinin çap ve boy gelişmeleri ile toprağın tekstür ve derinliği arasında yakın ilginin mevcut olduğu kabul edilmektedir (Akgül, 1975). Şavşat-Düzenli'de toprakların derin (90 - 100 cm), kum oranlarının yaklaşık % 60 tan fazla olduğu yerlerde ladinlerin boylu, düzgün gövdeli ve gelişmelerinin iyi olduğu saptanmıştır (Akgül, 1975). Ardanoç - Tepedüzü’nde ise toprak daha az derin (60 - 70 cm), kum oranlarının da % 40’ın altında ve geçirgenliğin azaldığı yerlerde ladin meşcerelerinin çap ve boylarının düşük olduğu görülmüştür. Artvin (Tütüncüler ve Saçınka), Rize (Uzungöl ve Santa), Trabzon (Kapıköy) ve Giresun’lu (Yavuzkemal) ladin meşcereleri bunlara tipik örnekler teşkil etmektedir.

Sonuç olarak, Doğu Ladininin de genellikle tüm ibrelerle olduğu gibi, genelde haffi karakterli, derin ve normal geçirgen, kırık strüktüre deki toprakları tercih ettiği ve buralarda iyi gelişmeler gösterdiği görülmektedir (Akgül, 1975).

3.3.4 Vejetasyon Durumu

Doğu ladininin yayılış miktarında, genel olarak rutubeti seven, soğuğa dayanıklı vejetasyon tipleri hakimdir. Bu rejyonda görülen or-

3.4 Blyotlik Faktörler

ne daima olarak yaşayabileceği bir mekan tutmuştur. Bu kişiler, yıllarca yaşadığı çevreye (hemen her ihtiyacını karşıladığı ormana) telafisi mümkün olmayan zararlar yapmaktadır. Ekip - dökük için tarla aç­makta, evini, ahırını inşa etmek için ağac matemelerini ve nihayet ya­kınlarını içersinde yaşadığı orman parçasından karşılamakta, keza hayvanların orada oltatmaktadır. Hayvanlar doğrudan ot, yete ve dallar yeteyle beraber, fideciğin tepe sürgünlerini de kopartırlar.

Hayvanlar doğrudan ot, yaprak ve dallar yeteyle beraber, fideciğin tepe sürgünlerini de kopartırlar. Yavuzkemal (Kulakkaya) - Giresun çevresinde çok sayıda çatallt rastlanmaktadır. Bu çatallar toprak seviyesinden başlamakta ve bazan 6 - 7 hafta 8 adedi bulmaktadır. Her biri 8 - 10 cm çapındaki bu gövdeler, tek ağacak toprak seviyesinden çııp, 4 - 5 m (bazan daha fazla) boyunda düzgün gövdeler yapmaktadır. Başka bir ifade ile te­pesi hayvanlar tarafından yenen ladin fidanından oluşan sürgünler (veya yan dallardan oluşan gövdeler) bugün aynı dip küütüğe sahip fakat müstakıl gövdeler halindedir.

Doğu Ladini mintkasında toprak ve ekolojik açıdan son derece sakınca bir diğer husus da ormanda tomrukların sürüklenecek taşın­masi, dök meyilli yerlerden (atak yerleri) aşağıya başıbos biraktıkları üre­tim mallarının (tomruk, direk, odun v.s.) özellikle tomruklarının toprağa, ormana ve öteki bitki örtüsüne verdiği zarar favkalede önemlidir. Bu, Giresun, Trabzon ve Artvin'de ladin üretim alanlarında sık rastlanan bir husustur. Atak yerleri olarak kullanılan yerlerde genelde toprağın sıkış­masi ve üst toprağın taşınması sonucu doğal gençlik getirilememekte, zama­nla çiçek ercyon alanlarında dönüşebilmektedir.

Yukarda genel hatlarıyla belirlediğimiz ormandan rastgele yıllarlan­ma nedenleriyle Doğu Ladini meşcerelerinde kapalılık kırılmaktak yer

Doğu Ladini, ekolojik şartların elverişsiz olduğu yerlerinde (bilhassa toprağın sıçal olduğu ve kapalılığın fazla olduğu yerlerde ve yeterli yağışın görülmemiş zamanlarda) Dendroctonus mic­cans ve Ips sexdenlatus gibi zararlı böcek afetlerine maruz kalmaktadır. Özellikle otlatım ve ötekileriyle kapalılığı bozulan, bazı altında kalan ladin meşcereleri, eğer yeterli yağıştaalamadıysa böcekler için iyi bir gelişme ortamı oluşturulmaktadır (Saatçioğlu, 1947, çev.). Bu bakımdan, Doğu Ladini meşcerelerinde bilgili ve bilinçli silvikültürel uygulamalar yapılmalıdır. Aksi takdirde ormanda ekolojik denge süratle bozulmaktadır.

KAYNAKÇA

Hasret ATASOY

4 doğu ladininin tohum özellikleri

Doğu Ladin Kozlak ve Tohumları
Foto: H. Atasoy
Dalında Hanız Oluşmuş Olmuşunmuş Bir Kozaلك
Foto: O. S. Erkuloğlu
4 DOĞU LADINININ TOHUM ÖZELLİKLERİ

4.1 Çiçek Yapısi ve Döllenme

Erkek ve dişi çiçeklerin renkleri, bulundukları birey üzerinde değişiklik göstermez. Erkek çiçekler eğlatun renkinde olan bireylerin dişi çiçekleri viyolat, san olanların ise yeşil renktedir.

4.2 Kozalakların Olgunlaşması, Tohum Yılları ve Tohum Verimi

Genel olarak Nisan, Mayıs ayı aralarında çok miktarda erkek ve dişi çiçeğin görülmesi, o yılın zengin tohum yılı olduğunu gösterir. Fakat tozlaşma zamanında havanın yağılı ve sisli geçmesi, döllenme oranının azalmasına dolayısıyla boş tohum miktarının yoğunalmasına, ayrıca şid-

Maçka - Meryemana vadisinde, Doğu Ladıninde değişik yükseklikte yapılan çiçeklenme (tozlaşma), tohumculanma, meyve teşkülü, yapraklanma ve meyve olgunlaşmasına ilişkin fenolojik gözlemler çizelge 1'de verilmiştir (Küçük, 1986).

Çizelge 1. Maçka - Meryemana Havzasında Yüksekliklere Göre Doğu Ladıninde Yapılan Fenolojik Gözlemler

<table>
<thead>
<tr>
<th>Gözlemler</th>
<th>1 Ocaktan</th>
<th>İlişken</th>
<th>Güllerin Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 m</td>
<td>750 m</td>
<td>1100 m</td>
</tr>
<tr>
<td>Çiçeklenme</td>
<td>128</td>
<td>132</td>
<td>140</td>
</tr>
<tr>
<td>Tomurcuklanma</td>
<td>132</td>
<td>134</td>
<td>140</td>
</tr>
<tr>
<td>Tohum Oluşumu</td>
<td>143</td>
<td>149</td>
<td>158</td>
</tr>
<tr>
<td>Yükseklik</td>
<td>144</td>
<td>147</td>
<td>150</td>
</tr>
<tr>
<td>Tohum Oluşumu</td>
<td>279</td>
<td>285</td>
<td>293</td>
</tr>
</tbody>
</table>

Aynı fenolojik gözlemlere göre, Doğu Ladın tohumlarının ortalaması en erken ve en geç olunlaşma tarihleri yüksekliklere göre çizelge 2'de verilmiştir.

62
Çizelge 2. Meryemana Vadisinde Yüksekliklere Göre Ladin Tohumunun Olgunlaşma Tarihleri

<table>
<thead>
<tr>
<th>Yükseklik</th>
<th>Olgunlaşma Tarihleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>En Erken</td>
</tr>
<tr>
<td>500</td>
<td>30 Eylül</td>
</tr>
<tr>
<td>750</td>
<td>9 Ekim</td>
</tr>
<tr>
<td>1100</td>
<td>14 Ekim</td>
</tr>
<tr>
<td>1450</td>
<td>16 Ekim</td>
</tr>
<tr>
<td>1600</td>
<td>17 Ekim</td>
</tr>
</tbody>
</table>

Meryemana 1100 m de Doğu ladını kozalaklarını olgunlaşması için, tozlaşma tarihinden itibaren günlük ortalama sıcaklıkların toplamının 2150 °C olduğunu da saptanmıştır (Küçük, 1986).

Gen alışveriş en iyi ve toplama maliyeti de en az olduğundan tohumlar, iyi ve zengin tohum yıllarında toplanmalıdır.

Çizelge 3. Yıllara Göre Doğu Ladininin Tohum Verimi Durumu

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Tohum Durumu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1956</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1957</td>
<td>Zayıf Tohum Yılı</td>
</tr>
<tr>
<td>1958</td>
<td>İyi Tohum Yılı</td>
</tr>
<tr>
<td>1959</td>
<td>Zayıf Tohum Yılı</td>
</tr>
<tr>
<td>1963</td>
<td>İyi Tohum Yılı</td>
</tr>
<tr>
<td>1964</td>
<td>Zayıf Tohum Yılı</td>
</tr>
<tr>
<td>1965</td>
<td>Orta Tohum Yılı</td>
</tr>
<tr>
<td>1967</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1971</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1975</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1979</td>
<td>Zengin Tohum Yılı</td>
</tr>
<tr>
<td>1981</td>
<td>İyi Tohum Yılı</td>
</tr>
<tr>
<td>1984</td>
<td>İyi Tohum Yılı</td>
</tr>
<tr>
<td>1985</td>
<td>Zayıf Tohum Yılı</td>
</tr>
<tr>
<td>1987</td>
<td>Zengin Tohum Yılı</td>
</tr>
</tbody>
</table>
Literatürde zengin tohum yıllarda bir ağaçta 400 - 500 kozalak olduğu, normal kapalıltaki meşcerelerde iyi ve zengin tohum yıllarında dökülen tohum miktarının 100 kg. civarında olduğu belirtilmektedir (Ürgenç, 1965). Doğu Karadeniz Ormanlık Araştırma Müdürlüğüne yapılan bir doğal gençleştirme uygulamasında 1600 m yükseklikte iyi tohum yıllarda tohumlama kesimi yapılmış üç alandaki 21 noktada saptanan, 1 hektara dökülen tohumların ortalama sayısı, tohum ağaci sayısına göre çizelge 4'de verilmiştir.

Çizelge 4. Tohum Ağacı Sayısına Göre Hektara Dökülen Ladin Tohumunun Miktarı

<table>
<thead>
<tr>
<th>Tohum Ağacı Sayısı</th>
<th>Hektara Dökülen Ortalama Tohum Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Adet)</td>
<td>(Adet)</td>
</tr>
<tr>
<td>220 (Taç normal)</td>
<td>16 Milyon</td>
</tr>
<tr>
<td>130 (Taç normal)</td>
<td>10 Milyon</td>
</tr>
<tr>
<td>260 (Taç Zayıf)</td>
<td>9.3 Milyon</td>
</tr>
<tr>
<td>Ortalama 203</td>
<td>11.7 Milyon</td>
</tr>
</tbody>
</table>

Çizelge 4'deki ortalama değerler ekstrem değerler olarak 6 - 29 Milyon adet arasına değişmektedir. Bu değişim ağacların taç yapısının normal ya da zayıf olmasına ve birim alandaki tohum ağaci sayısının farklılık göstermesinden ileri gelmektedir.

Bu bulgulardan yararlanarak, Doğu ladininin iyi ve zengin tohum yıllarda 1 ağaçta 400 - 500 adet, 1 hektarda ise 1800 - 2500 kg kozalak olduğu ve bunlardan da 1 hektara 10 - 15 milyon adet tohum döküldüğü söylenebilir.

1 kg hava kurusu ladin kozalagından 81 gr tohum elde edilebilir. Sada, toplama anında kozalakların daha rutbelevel olduğu düşünülecek.
bu miktarın 56 gr olarak hesaplanması daha uygun olur (Ürgenç, 1965).

4.3 Tohum ve Kozalak Özellikleri

Doğu ladininin tohum ve kozalaklarına ilişkin özellikleri çizelge 5'de verilmiştir.

Diğer taraftan üstün görünüşlü (plus) ağaçların tohumlarının ve fidanlarının diğer ağaçların kilerinden (Gezer, 1977), aynı populasyonda kozalakların büyük olan ağaçların tohumlarının küçük kozalaklardan (Atasoy, 1988) daha ağır olduğundan, tohum meşçelerinin seçiminde tohumu daha ağır olanlar, tohum ağaçları seçilirken ise daha büyük kozalaklar tercih edilmeliştir.

4.4 Kozalaklardan Tohum Çıkarma ve Saklama

Kozalaklar toplanıp toplanmaz tohum çıkarma yerlerine ulaştılarak havada ve temiz bir zemin üzerine serilmeli ve zaman zaman kanıştırılmalıdır. Eğer kozalaklar oğun ise, oda sıcaklığında (15 - 20 °C 66
Çizelge 5. Doğu Ladini Kozalak ve Tohumlarının Sayısal Özellikleri

<table>
<thead>
<tr>
<th>Tohum ve Kozalak Özellikleri</th>
<th>Sayısal Değerler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En az</td>
</tr>
<tr>
<td>1000 dane ağırlığı</td>
<td>4.3</td>
</tr>
<tr>
<td>Tohum boyu</td>
<td>2.8</td>
</tr>
<tr>
<td>Tohum genişliği</td>
<td>1.4</td>
</tr>
<tr>
<td>Tohum kalinliği</td>
<td>1.1</td>
</tr>
<tr>
<td>Kanat boyu</td>
<td>9.0</td>
</tr>
<tr>
<td>Kanat genişliği</td>
<td>3.1</td>
</tr>
<tr>
<td>Kozalak boyu</td>
<td>3.6</td>
</tr>
<tr>
<td>Kozalak ağırlığı (hava kurusu)</td>
<td>1.8</td>
</tr>
<tr>
<td>Kozalak genişliği</td>
<td>1.0</td>
</tr>
<tr>
<td>Kozalak karpel sayısı</td>
<td>55</td>
</tr>
<tr>
<td>Tohum bulunan karpel sayısı</td>
<td>31</td>
</tr>
<tr>
<td>Kozalakta bulunan tohum sayısı</td>
<td>62</td>
</tr>
<tr>
<td>Kozalıklar elde edilen tohum sayısı</td>
<td>58</td>
</tr>
<tr>
<td>Boş tohum oranı</td>
<td>%3.8</td>
</tr>
</tbody>
</table>

1. Ürgenç, 1965
2. Altsoy, 1982

Çizelge 6. Doğu Ladini Kimi Populasyonların ve Her Populasyonda En Az ve En Çok Değer Gösteren Bireylerin Ortalama Kozalak ve Tohumun 1000 dane Ağırlıkları

<table>
<thead>
<tr>
<th>Populasyonlar (Meşçeler)</th>
<th>Kava Kurusu Kozalak Ağırlığı (gr)</th>
<th>1000 dane Ağırlığı (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Böcek-1550 m</td>
<td>3.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Ardanuç-1500 m</td>
<td>6.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Maçoğlu-700 m</td>
<td>0.5</td>
<td>5.3</td>
</tr>
<tr>
<td>Meryemana-1600 m</td>
<td>5.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Hamşıköy-1450 m</td>
<td>5.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Ortalama</td>
<td>5.8</td>
<td>3.6</td>
</tr>
</tbody>
</table>
de) 3.5 günde tohumları elde edilebilir. 4.2 bölümünde belirtilen nedenlerle 10-15 gün erken toplanan kozaalıklar 30-40 °C ısıtma ve 4.2 bölümünde belirtilen nedenleriyle 10-15 gün erken toplanan kozalaklar 30-40 °C ısıtlan odalarda (sıcak oda usulü) kurutulmak suretiyle kozaalıkların açılması sağlanır (Ürgenç, 1965). Kozalak rutubeti % 28'e düşünce kozalaklar açılmaya başlar.

Doğu ladini tohumunun +3, +5 °C ile % 6-8 rutubette, kapalı kaplar içinde 5 yıl saklanabileceği bildirilmektedir (Aslan, 1972).

4.5 Çimlenme Kabiliyeti

Ekilen ladin tohumunun kabuğunun topakta çatlamasıyla kökcüğün mikropili terk etmesinden sonra, toprağın kuruması, çikmayı önlemi ölçeğinde olmusuz etkilediğinden (Ürgenç, 1965), çikma gerçekle­şinceye kadar ekim yaşığıının, dolayısıyla tohumun kurumaması sağlanmalıdır.

ATASOY, H. 1983. Doğu Ladinin Tozlaşması Zamanı. (Yayınlannışı döküman)

ÜRGENÇ, S. 1965, Doğu Ladin Kozalsak ve Tohumu Üzerine Araştırmlar OGM Yayın No: 417/40, 143 S.
Hasret ATASOY

doğu ladininin fidanlık tekniği

Tirebolu Fidanlığı'nda 3 + 0 Yaşlı Doğu Ladini Fidan Yastıkları
Foto: H. Atasoy
3 + 0 Yaşlı Doğu Ladınlı Fidanları
Foto: O. S. Eroloğlu
5 **DOĞU LADİNİNİN FİDNAKLİK TEKNİĞİ**

5.1 **Fidanlık Yeri ve Toprağı**

Sahil fidanlıklarındaki ladın fidanlarının, yüksek yerlerdeki fidanlıkائدiklerden daha boylu, kalın ve ağır olduğu ölçülmüştür (Ataş, 1986). Yüksek fidanlıkائدiklerin 5 yılda ulaşkları boya, alcak fidanlıkائدikler 3 yılda ulaşabilir. Bu durumda fidanlıkائدilerin alcak rakamlarda kurlaması, yüksek fidanlıkائدilerin daha az alanda aynı boyda fidan yetiştirilebilir. Fidanlık yüksekliği ve fidan yaşına göre ladin fidanının boyu, çapi ve kuru ağırlıkları çizelge 1'de verilmiştir.

Doğu Karadeniz Bölgesinin jeolojik yapısı nedeniyle fosfor içeren apatit mineralinin kısıtlı bulunması dışında, yöre topraklarında mineral besin maddesi eksikliği genelde bulunmamaktadır. Bu nedenle fidanlık toprağının organik madde zengin tutulmasının ve ayrıca yapay gübreleler fosfor takviyesine özen gösterilmeli. 15 cm derinlikte 1 m² lik fidanlık toprağında 10 gr fosforun (P₂O₅) bulunması yeterlidir.
5.2 **Ekim Tekniği, Fidan Sıklığı ve Koruma**

Bir yıllık ladın tohumunun çimlenme yüzdesi genellikle % 90 in üstünde ve çimlenme hızı % 70 civardadır. Böyle bir tohumun sürme deneyi % 65, fidan yüzdesi ise yaklaşık % 44 dür. Çimlenme yüzdesi % 75 in, çimlenme hızı ve sürme deneyi sonuçları % 50 nin altında olan ladın tohumunun ekilmesi tavsiye edilmemektedir (Ürgenç, 1965).

Her ne kadar, daha az sayida çimianebilir tohumun ekilmesiyle birim alanda istenen fidan sıklığının elde edilebileceğini düşünmek teorik olarak mümkünse de, ladında tek tek çikmadaki zorluk, ekim hataları, özellikle ilk yılda etkili olan çeşitli hastalıklar, don, dolu, kuş ve fare zararı ve kontrol edilememeyen diğer nedenlerle, uygulamada yapılan 12 gr/m² ekimlerinde istenen homojenlikte fidan sıklığı elde edilemediği ve ekimlerin boşluksuz olduğu görülmüştür. Bu durum bir taraftan birim alanda elde edilecek fidan sayısının azalmasına, diğer taraftan da fidanların birbirinden farklı boyutlarda yetişmesine neden olmaktadır. Gözlemen göstermiştir ki; 1 m² lik ekim yastığındaki 1500 adet fidanın elde edilebileceği biçimde ekimlerin yapılması, çıkan fidanlardan ikinçii yılda seyreltme yapılarak homojen dağılımla istenen fidan sıklığının sağlanması, birim alanda elde edilecek fidan sayısının ve standart boyutlarda fidan yetiştirilmenin garantisini bakımından güvenli bir yoludur. Doğu ladıninde fidan yüzdesinin, çimlenme yüzdesinin yaklaşık yarısı kadar olduğu (Ürgenç, 1965), dikkate alnrsa, ekimlerin 3000 adet/m² çimlenemelir tohum hesabıyla yapılması gerekir. Doğu ladını fidanların sıklığı ise aşağıdaki biçimde önerilebilir.

a- Repikajda kullanılan amaciyla 2 + 0 ve 3 + 0 yaşlı ve 10 - 15 cm boylu yetiştirilecek fidanlardan 1 m² de 400 - 500 adet,
b- Yerinde kök kesimleri yapılarak 4 + 0 ve 5 + 0 yaşında ve 25 - 30 cm boyunda yetiştirilecek fidanlardan 1 m² de 175 - 200 adet ve
c- Şarılta yastıklarında 2 + 2 ve 3 + 2 yaşlarında yetiştirileceklerden de 1 m² de 93 - 140 adet fidan bulunmalıdır.
Ekim yastıklarının genişliği; işi ile çalışan fidanlıklarda 110 - 120 cm, makine ile çalışanlarda ise makine genişliği kadardır. Ladin ekimi için ekim yastıklarında boydan boya 1 cm derinliğinde 7 - 8 adet ekim çizgisi açılır. Doğu ladininin daha derin ekilmesi, çıkmayı olumsuz etkiler.
Su olarak şişip çatlayan ve kökçüğü mikropili terk eden Doğu ladinin tohumlarının ekim yastığında kurumasi halinde, ekimlerdeki çıkmının önemlendirilmesi, çayıranın sık sık yapılmasının yerine, hava koşullarına bağlı olarak sulamanın sık sık yapılmasını gerektirir.
Ekim yastığında şişen tohum çatlayarak önce kökçüğü mikropili daha derin Doğu ladinin tohumlarının ekim yastığında kuruması halinde, ekimlerdeki çıkmının önemlendirilmesi, çayıranın sık sık yapılmasının yerine, hava koşullarına bağlı olarak sulamanın sık sık yapılmasını gerektirir.
Kapatma materyalı olarak aşağıdaki preparatlardan biri uygulanmalıdır.
a- 1 kısım yanmış ahır gübresi + 1 kısım humus + 1 kısım mil toprağı
b- 2 kısım humus + 1 kısım dere kumu
ilk yapraklar

Epikotil

Kotiledon

Hipokotil

Kök boğazı

Köçük

Şekil 1 Doğu Ladını Fideciği (Gezer, 1977)

Şekil 2 1 + 0 Yaşlı Doğu Ladını Fidanlarının Epikotilleri. Erken Ekilen ve Erken Çimlenenlerde iyi Gelişirler, Geç Ekilen ve Geç Çimlenenlerde ise iyi Gelişemezler.
Kapatma materyalı elenmiş olmalı ve halif merdane ile bastırıldığıında ekim çizgisi derinliğini dolduracak kadar kullanılmalıdır.

Fideciklerin sıcaklığa karşı duyarlılığı bakımından Doğu Ladini fidecikleri "Çok duygulu türler" arasındaki (Saatçioğlu, 1976). Bu nedenle çıkan fideciklerin kuvvetli sıcaklardan, kurakktan, güneş yanmasına ve donlardan korunması, bunun için de gögelik ve siperliklerin kullanılması gerekir.

Gölegelemeye, çıkmanın çoğunlukla gerçekleştiği zamanlarda başlarması ve başlangıçta gölegeleme oranı % 70 - 80 olması, fideciklerde odunlaşma olduğunda topaçın % 50 nin alta düşürülmesi dire. Doğu ladininde ikinci ve sonraki yıllarda gölegeleme düşünülmemeli (Gezer, 1975).

Don atması, kaymak bağlama, şiddelli rüzgarlara karşı rüzgar perdeleri, mantar, kuş ve fare zararlarına karşı ekimlerin korunması için genel kurallar uygulanır.

5.3 Şaşırtma

Doğu ladini fidanlarından, gövde/kök oranı 3 ve daha az olanların dikimdeki başarısı, 3 den büyük olanlardan fazladır. 3 + 2 yaşında ve gövde/kök oranı 3 olan ladin fidanlarının arazideki başarısı, 5 + 0 yaşında ve gövde/kök oranı 4 ve daha fazla olanlardan çok daha iyi olduğunu يستطيع (Evüboğlu, 1988), Doğu Ladınınde prensip olarak şaşırtılmış fidan yetiştirilmelidir. Şaşırtma yapılmadığından ise en azından yerinde kast kesimleriyle fidan dengesi sağlanmalıdır. Yerinde kast kesimlerinin hem yatay ve hom de dikey yapılması gerekir.
2 + 2 ya da 3 + 2 yaşlı şaşırtılmış fidan yetiştirilmek için 2 + 0 ya da 3 + 0 yaşlı 10 - 15 cm boylu fidanların, fidan boyuna göre 5 - 7 x 15 cm aralıksız mesafelerde şaşırtılması yeterlidir. Ladınlı plantıvar şaşırtması uygun değildir. Sağcıoğlu (1976) tarafından belirtilen "Hendek ke- narı" ya da "Dar belhendeği" uygulanmalıdır. Şaşırtmadan önce fidan kökleri % 50 - 75 oranında budanabilir. Bu şekilde budama ile gövde/ kök oranı bakımından daha dengeli fidan yetiştirilebilir. 2 + 2 ve 3 + 2 ladın fidanları, bir yıl daha şaşırtma yastığında kalmaları halinde, kök- ler lãiınaşmaktadır. Bu olumsuzluğun giderilmesi için yerinde yatay ve düşey kök kesimlerinin uygulanması gerekir (Atasoy & Şirin, 1989).

5.4 Gübreleme

Ladin fidanlıkların bulunduğu Doğu Karadeniz Bölümünde yağışın çok olması, geçirgen olan fidanlık toprağının yıkarak besin maddelerinin azalmasına neden olmuştur. Ladın fidanları ekim yastığında, amaca göre değişen 3, 4 ve 5 yıl dünya bir zaman kalacağından, başlangıçta fidanlık toprağı her ne kadar verimli biçimde hazırlanmışsa bile, bu uzun sürede besin maddelerinin yıkarılması ve fidanlar tarafından alınmaları nedeniyle de bir kaç yıl gübreleme ihtiyaç doğabılır.

Gübrelemenin doğal gübrelerle (ahir gübresi, humus, turba v.s.) yapılması en iyisidir. Ancak, ihtiyaçta göre yapay gübrelerin de kullanılması gereklidir. Ladın fidanlarında NPK (15 - 15 - 15) kompoze gübresiyle yapılan gübrelemenin, ladın fidanlarının ağrılığını, gübre verilmeyenler- re göre 2-6 kat arasında artırdığı, organik maddelerin % 5 den çok olduğu ve 15 cm derinlikte 1 m² lik ekim yastığından Azotun 40 - 50 gr, Potasyum 30 - 40 gr, Fosforun 10 gr ve pH'nın 5.7 olduğu yerlerde, ladın fidanlarının en iyi gelişikleri bildirilmektedir (Atasoy, 1985).

Fidanlık yastıkları hazırlanırken, ekimlerden 1 - 2 ay önce toprağa doğal gübrelerle birlikte (ahir gübresi, turba, kompost, humus) ihtiyaç kadar fosfor karışırlımlı, her yıl toprak analizleri yapılıarak eksik bulu-
nan diğer besin maddeleri (Azot, Potasyum, Sodyum, Mağnezyum v.s.) ya ekim çizgileri arasında, ya da sulama karıştırılarak verilmelidir.

Topraktaki organik maddinin % 5 den daha çok olması, hem dengeleme/yenidenbeslenme sağlar ve hem de yağmur ve sulama suyu ile oluşan yıkanmayı azaltır. Böylece her yıl gübrelemeye ihtiyaç duymayabilir.

5.5 Fidan Özellikleri

Yeni çıkan fidecilerin hipokotilinin üç kısımda kotiledonlar (çene yapraklar) bulunur. Doğu ladininin 8 kotiledonlu fidonun en çoktur. Bunu sırasıyla 9 ve 7 kotiledonlar izlemektedir. 10, 6, 11 ve 5 kotiledonlar ise ender bulunmaktadır (Gezer, 1977).

Kotildenin tamamı toprak üstüne çıktuktan sonra epikotil gelişimi başlar. İlkubreler ve tomurcuklar, epikotilin üstünde oluşurlar. Doğu ladinin, değişik yüksekliklerdeki fidanı kara ve fidan yaşına göre fidan boyu, çap ve ağırlıkları çizelge 1 de verilmiştir.

Ladin saçakkök yapmaktadır. Ancak 1 + 0 ve 2 + 0 yaşlarında kökler genellikle derine giden bir karakter gösterir. Sonraki yaşlarda derine giden kök körelerek yan kökler gelişir. 3 + 0 yaşında 70 cm yana, 4 + 0 ve 5 + 0 yaşında da 40 cm derinliklere uzanan kökler ölçülmuştur. Yan köklerin çoğu, toprak yüzeyinden aşağı 3 - 4 cmlik kök kısımlardan ayrılmaktadır. Bu durum, Doğu Ladinin pek çok kesimlerinin ve şaşırtmadakı kök budamasının 10 cm ye kadar yapılabileceğini göstermesi bakımından önemlidir. Ladin fidanlarında kök gelişimi 3. ile 4. yaşlar arasında en çok olduğu, şaşırtmaya da yerinde kök kesimleri, kökdeki büyüme onerjisinin daha çok saçak kök yapısında kullanılabileceği düşünülmüştür, 3 + 0 yaşını dolduran fidaniarda düşünülmelidir (Atasoy, 1985).
Çizelge 1. Değişik Yükseklikteki Fidanlıklarda Fidan Yaşına Göre Ladin Fidanının Boyu, Kök Boğazı Çapı ve Fidan Kuru Ağırlığı

<table>
<thead>
<tr>
<th>Fidan yaş</th>
<th>Fidanlık yüksekliği m</th>
<th>Fidan boyu cm</th>
<th>Kök boğazı çapı mm</th>
<th>Fidan kuru ağırlığı mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+0</td>
<td>10</td>
<td>3.2</td>
<td>0.8</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>3.0</td>
<td>0.5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>2.9</td>
<td>0.5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>2.9</td>
<td>0.4</td>
<td>20</td>
</tr>
<tr>
<td>2+0</td>
<td>10</td>
<td>12.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>6.4</td>
<td>1.5</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>5.0</td>
<td>1.3</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>4.1</td>
<td>1.0</td>
<td>110</td>
</tr>
<tr>
<td>3+0</td>
<td>10</td>
<td>20.0</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>9.0</td>
<td>2.5</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>8.0</td>
<td>2.2</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>6.3</td>
<td>1.6</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4+0</td>
<td>950</td>
<td>13.5</td>
<td>3.4</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>22.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>12.6</td>
<td>3.0</td>
<td>1450</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>10.4</td>
<td>2.2</td>
<td>1010</td>
</tr>
<tr>
<td>5+0</td>
<td>950</td>
<td>24.0</td>
<td>4.4</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>32.0</td>
<td>4.5-6.6</td>
<td>8000-30.000</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>19.0</td>
<td>3.8</td>
<td>5630</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>15.3</td>
<td>2.8</td>
<td>4100</td>
</tr>
<tr>
<td>3+1</td>
<td>950</td>
<td>15.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3+2</td>
<td>950</td>
<td>24.0</td>
<td>4.6-6.9</td>
<td>17000</td>
</tr>
</tbody>
</table>

1 Her yıl göbrelenmiş fidanlardır.
1 + 0, 2 + 0, 3 + 0, 4 + 0, 5 + 0 yaşlı Doğu ladini fidanlarının en uzun köklerinin ortalama boyları sırasıyla 10, 17, 20, 31 ve 32 cm dir.

5.6 Söküm

KAYNAKÇA

SAATÇIOĞLU, F. 1976. *Fidanlık Tekniği, İ.Ü. Or. Fak. Yayın No: 223, İstanbul*

Ali Kenan EYÜBOĞLU

doğu ladininin doğal gençleştirilmesi

Meryemana Araştırma Orman'ında Siper Altında
Doğal Gençleştirme
Foto: H. Atasoy
İki Yaşındaki Doğu Ladini Doğal Gençliği
Foto: Ö. S. Erkülöğlu
6 DOĞU LADINİNİN DOĞAL GENÇLEŞTİRİLMESİ

6.1 Saf Doğu Ladini Meşcereleri

Doğu ladini saf koru ormanlarının ülkemizde doğal yayılış alanı 135 959 ha olup, bunun 82361 ha ilk bölümü üzerinde normal koru, 53988 ha ilk bölümü üzerinde de bozuk koru ormanların yer almıştır. 82361 ha ilk normal koru ormanlarının kapalılığa göre dağılım alanları ise:

2. Kapalılıkta (% 41 - 70) olan normal koru alanları: 37235 ha.

3 Kapalılıktaki meşcerelerin tümünü, 2 kapalılıktaki meşcere-

lerin ancak yarısının doğal gençleştirme elverişli olduğu kabul edildi-ğinde, yaklaşık 45.000 ha ilk Doğu ladini normal koru ormanının ka-

palılık yönünden doğal gençleştirme elverişli olduğu söyleyebilir. Di-ğer taratlan bu alan içerişinde muhafaza karakterinde olan alanların mikları da azımsanamayacak derecededir. Bu durumda doğal genç-

leştirmeye elverişli Doğu Ladini meşcerelerinin miktarı yaklaşık

40.000 ha dir. Diğer bir ifade ile saf Doğu ladini ormanlarının kuruluş il-

bariyle % 30’un normal kuruluşta olup, doğal gençleştirme konu, geri

kalan % 70’i ise normal olmayan kuruluşta olup yapay gençleştirme

konu olan ormanlardır (Ata, 1980).

Doğu ladindende idare süresi ortalama 100 yıl olarak kabul edilmiş-

tır. Bu durumda yıllık doğal gençleştirme alanı yaklaşık 400 ha dir. An-

cak doğal gençleştirme zengin tohum yıllarına bağlı ve zengin tohum

yı y da dört yılda bir olduğundan, zengin tohum yıllarında 4 x 400 =

1600 ha ilk alanlarda doğal gençleştirme yapılarak 100 yılda, doğal
yolla gençleştirilebilecek tüm Doğu ladini saf meşceralarının gençleştirilmesi sağlanabilir.

Doğu ladinin gençleştirilmesinde en olumsuz faktör yöredeki yöğun ve boylu diri ortudur. Diri ortu çöğu kez alana düşen tohumların toprağa ulaşmasını engelleyerek bunların çimlenmesine fırsat vermediği gibi, çimlenen tohumlardan çıkan fidanların da yeterince ışık almasına mani olarak bunların ya ışıkzıktan boğulmasına ya da yaşabilen fidanlarının cild kalmalarına neden olur. Fidan civarındaki diri ortu ayrıca topraktaki su ve besin maddelerine de ortak olarak fidanların gelişmelerini yavaşlatır.

Diri ortünün alana gelişti, herbisitler dışında (Ata, 1979) ancak siper yardımıyla engellenebilmektedir. Siperin bir yararı da; don tehlikesi olan alanlarda siper altındaki sıcaklık, soğuk havalarda, açık alana göre daha çok oluştuğundan gençliği don zaranından korumaktır.

Bu durumda Doğu ladinin doğal gençleştirilmesinde en uygun metod siper işletmeleridir. Siper altında gençleştirme, zonlarda ve daha geniş alanlarda yapıldığı zaman Büyük Alan Siper İşletmesi, seritler ve gruplarla yapılması halinde ise Küçük Alan Siper İşletmesi adını alır.

Yörede az da olsa (% 3 - 5) değişik yaş gruplarını ve dolayısıyla değişik çap gruplarını içeren ve seçme kuruluşu andiran Doğu ladini
meşcereleri de bulunmaktadır. Bu meşcerelerde ağaç sayılarının çap kademelerine dağılışı azalan bir eğrider çok, zızkızık bir durum göstermektedir (Ata, 1980).

Ayrıca, yörede bazı çok sarp alanlardaki Doğu Ladini meşcereleri muhafaza ormanı olarak ayrılmıştır. Bu meşcerelerin doğal gençleştirilmesinde meşcerenin durumuna göre kümere veya grub seçme işletme biçimi kullanılabilir. Bu açıklamaların yanında, Doğu Ladindende gençleştirmeye metodu seçerken karar vermede yardımcı olabilecek bazı esaslar çizelge: 1’de verilmiştir.

Genelde yaş sınıfları Amenajman metoduna uygun olarak işletilen doğu ladıni meşcerelerinin doğal yolla gençleştirilmesinde siper işletme uygulanması gerektiğiğine göre kesimler; siper işletmeinin içerdüğü, hazırlama, tohumlama, ışık ve boşaltma kesimleri olmak üzere 4 evrede yapılır. Ister zon siper, ister etek şerili siper işletme uygulanır, uygulanışlarında bir fark olmadığı için bu dört evre her iki metod için geçerli olmak üzere bir arada açıklanmıştır. Ayrıca etek şeridi siper işletme ile gençleştirilecek bir doğu ladıni meşcere için düzenlenenen gençleştirme vaziyet planı çizelge 2 de verilmiştir.

6.1.1 Hazırlama Kesimleri

| Çizelge 1 Doğu Ladıninde Gençleştirme Metodu Seçimi Esasları |
|-------------------|-------------------|-------------------|
| **MEŞCERELİKLERİ** | **SEÇME ESAS OLAN KRİTERLER** | **SEÇME ISLETMESİ** |
| Kapalılık | Kapalılık 0,6 ve daha yukarı | Kapalılık 0,5 ve daha yukarı | Kapalılık 0,5 den daha aşağı |
| Tohum Ağacı | Tohum ağacı sayısı ve evsali yeterli, dağılışı düzenli | Tohum ağacı sayısı ve evsali yeterli, dağılışı düzenli | Tohum ağacı sayısı yetersiz, evsali körü dağılışı düzensiz |
| Diri Örtü | Diri örtü yok veya çok az | Diri örtü yok veya çok az | Diri örtü yoğun veya çok yoğun |
| Meşcere Kuruluşu | Tek tabakalı ve aynı yaşlı (NORMAL KURULUŞLU) | Tek tabakalı ve değişik yaşlı (SEÇME KURULUŞA BENZER KURULUŞLU) | Tek tabakalı ve aynı yaşlı (NORMAL OLMAYAN KURULUŞLU) |
| Uygulanacak Gençleştirme Metodu | Doğal Gençleştirmeyi ve Şemeye Uygun Olduğuna Dikkat Edilen Planlara Düzenli Yapılmasını İstemek | YAPAY GENÇLEŞTİRME | Kapalılık Kapalılık 0,3 - 0,4 tohum 0,2 ve daha ağaç dağılışı az, yoğun nitelikten dişli ağaçlı var ise |
| Kapalılık 0,8 ve daha yukarı ise Hazırlama ısılmıştır. 0,6 - 0,7 ise yapılmaz. | Kapalılık 0,5 ve daha yukarı ise | Kapalılık 0,5 ve daha aşağı ise |
| Siperiş | Siperiş (Siper altında doğal gençleştirme yapılıyor) | Siperiş (Siper altında doğal gençleştirme yapılıyor) | Siperiş (Siper altında doğal gençleştirme yapılıyor) |
| Siperi | Siperi (Siper altında doğal gençleştirme yapılıyor) | Siperi (Siper altında doğal gençleştirme yapılıyor) | Siperi (Siper altında doğal gençleştirme yapılıyor) |
| ALANI (Yaklaşık) | 40000 (≈ 29) | 6000 ha (≈ 4) | 90000 (≈ 57) |

(Ömer S. Erkulöğlu tarafından düzenlenmiştir, 1989)
ÇİZELGE 2
Doğu Ladıninde Dar Şerit Siper Doğal Gençleştirme Vaziyet Planı (I. Bonitet İçin)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>TD</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Şerit genişliği: 30 m. Müdahale Cephesi: 120 m.

H : Hazırlama Kesimi
T : Tohumlama Kesimi
I : Işık Kesimi
B : Boşaltma Kesimi
T.O. : Tamamlama Dikimi

(EYÜBOĞLU, 1988)
Doğu ladını meşcerelerinin çoğununda kapalık kırıldığından hazırlama kesimlerine gerek yoktur. Az de olsa hazırlama kesimini yapması gereken meşcerelerde; (kapalılığı 0.8 ve daha fazla olan) hazırlama kesimleriyle galip gövde derden; sıkıdağık, 'fena' şekilli azmanlar, çatalar ve kıraçlayıcılar ve hasta gövde derden; ezilmiş ve ölmekte olan gövde ve uzaklaştırılmak suretiyle geçmişin ihmalleri giderilir. Tam kapalı meşcereye hazırlama kesimleriyle kapatılık 0.7 - 0.6'e ve hatta 0.6'ya düşürülmelidir. Rüzgar devirme tehlikesi olan alanlarda en az 2 - 3 yıl aralıklarla hazırlama kesimleri yapılmalıdır.

Bu kesimlerle ara ve asli meşcere elemanlarının bütün alana eşit dağılışa getirilmesi sağlanmalıdır.

Son yapılan hazırlama kesiminden 2 - 3 yıl sonra tohumlama kesimi yapılmalıdır. Bu süre daha uzun alınacak olsa muhtemel rüzgar devirmeleri sonucu oluşacak boşluklara diniörtün gelip yerleşmesine imkan sağlanmış olsun.

6.1.2 Tohumlama Kesimi

Tohumlama kesimi iyi ve zengin tohum yıllarında yapılmalıdır. Zengin tohum yıllarında meşcere meşcere meşcere meşcere galip ağacların hepsi tohum tutar. İyi tohum yıllarında gelip ağacların büyük ekseriyeti tohum tutar ve tohum verimi zengin tohum yılı veriminin % 70 - 91'i kadar olsun (Ürganç, 1966).

Tohumun olgunlaşması, Meryemana Vadisinde yapılan bir çalışmada 5 yıllık fenolojik gözlemler ortalaması olarak 500 - 1600 m yerde 1 Ekim - 5 Kasım tarihleri arasında olmaktadır (Küçük 1986). Diğer bir çalışmada ise tohumun 15 Ekim - 15 Kasım tarihleri arasında olgunlaştiği ve herbir 100 m yükseklik farklı ve kuzey - güney bakılarının olgunlaşmaya 2 - 3 gün ettiği bildirilmiştir. Ladin tohumunun sonradan olgunlaşma özelliği vardır. Bu özellik nedeniyle kozalaklar olgunlaşmadan 15 gün önce de toplanabilir (Ürgenç, 1965).

50 yaşından küçük meşceralerden toplanan tohumların çimlen- me kabiliyeti yetersizdir (Ürgenç, 1965). + 3 °C de tohumun 5 yıl saklanabileceğini ve ikinci ve üçüncü yıllara ait çimlenme yüzdesi ve enerjisinin diğerlerinden daha yüksek olduğu bulunmuştur (Aslan 1972).

Doğu ladini gençliğinin alana gelip yerleşebilmesi için tam açık gün- lerdeki işık entansitesinin % 25 - 33 den fazla olması gerekliktir. Bu yak-
laşık 0.4 kapalılığa eşdeğerdir (Ata, 1980). Bu nedenle tohumlama keşiminde kapalılık en az 0.5' e düşürlmelidir. Ağaç laç yapısına bağlı olmakla beraber kabaca 3fade edilirse, ağaclar arasında 6.5 - 8 m uzaklık bırakıldığında 0.5 kapalılık elde edilmiş olur. Rüzgara karşı korunulu ve dişi örtü gelişinin yoğun olması alanlarda kapalılık 0.4 e kadar düşürebilir. Zira meşcere altına girecek ışık fidan sağlık ve gelişimini önemli ölçüde etkilemektedir. Tohum ağaçları olarak bırakılan ağaçların iyi kabede olmasına önem gösterilir. Zira olayı seleksiyon ile költülü özelliklerin alınan uzaklaştırılması ile gelecek gençliğin irisi özelliklerinin istah edilmesine yardımcı olmamış olur. Ancak çıkartılmasıyla meşcerede önemli bir boşluk oluşacaksa, költü firtsı ağaçlar olsa da, siper etkisinden zararlanılabileceği için bu ağaçlar çıkartılmamalıdır. Çünkü gelecek gençlik için ana sorun, onun alana gelip yerleşmesini önleyen önemli bir örtüdür. Diri örtünün gelişir de herbisler dışında (Ata, 1980), ancak siper yardımcıla engellenebilmektedir.

Bu nedenle, eğer tohumlama kesiminden sonra gelen gençlik sayısı ve dağılımı yetenli değilse 2. ve 3. zengin tohum yıllarından da yararlanılarak gençliğin yetenli düzeye gelmesi sağlanmalıdır.

Kayıplar düzenlisiz dağılım gösterdiğiinde, ilk yıllarda tamamlama dikimleri yapılmalıarak beklenmelidir.

6.1.3 Işık Kesimi

İşık entansitesinin %25 den aşağı düşmesi halinde alan üzerindeki kadın gençliğinin sayısı hem azalma hem de mevcut fidanların canlı görünümü kaybolmaktadır. İşık entansitesi %25 den %60 a (0.3 kapalılık) çıkıncaya kadar dallanma, ibre sıkılığı, boylanma artmaktadır, %60 dan sonra belirgin bir değişiklik olmamaktadır (Ata, 1980).

Nitekim yapılan bir araştırmada tohumlama kesimiyile kapalılığı 0.5 e düşüren bir alandaki gençliğin 11 yıl sonraki boyu, hemen bilişekte yer alan etek serisi traslama durumu uygulanmış alandından %30 daha az olmuştur (Eyüboğlu, Atasoy, 1989). Siper alındığı gençlikte boy sürgüleri kısa, büyüme cansız, tomurcuk ve ibreler zayıf ise gençlik ışık ihtiyacıtır (Saatçioglu, 1979). 93
Yukarıda ifade edildiği gibi, siper bir yönden diри örtü gelişini engellerken, diğer taraftan gençliğin gelişimini de olumsuz yönde etkilemektedir. Gençlik fıça biçiminde gelişmiş ve diiri örtüyü barındırmamışsa, ışık kesimiyle gençliğe ışık verilerek bunun büyümesi hızlandırılmalıdır.

Gelen gençliğin durumuna göre Doğu làdınde ışık kesimi tohumlama kesiminden en az 8 - 12 yıl sonra yapılmalıdır. Böylece ilk yıllarda çok olan fidan zaiyati, 2 - 3 kez zengin tohum yıllardan yararlanarak kısmen telafi edilmiş olur. Doğu làdınde gençleştirme dönem ilk yıllarında fidan zaiyati çok olduğundan başlangıçta çok fidanın bulunması arzu edilir. Azman yapmayan türlerde, m²'de en iyi gelişmiş ve gürbüz 2 - 3 fidanın yeterli olarak bildirilmişdir (Saatçioğlu, 1979). Doğu làdını biyolojik bağımsızlığına 12 - 16 yılda kavuştuğundan, 8 - 12 yaşındaki gençline m² de 3 - 4 fidanın bulunması doğal gençleştirme için yeterlidir denilebilir.

İlk tohumlama kesimyle elde edilen gençliğe ortalama büyü 20 - 40 cm ye ulaşınca (8 - 12 yıl sonra) ışık kesimi yapılarak kapalık 0.3 e düşürelmelidir. ışık kesiminin özelliği heterojen oluşudur. Gençliğin bol ve diiri örtü gelme ihtiyalı az olan alanlardaki ağaçların çıkarılmasına öncelik verilir. Doğu làdında bir ışık kesimi yeterli olmaktadır.

İşik kesiminden elde edilen emvalan alanından çıkarılması esnasında gelen gençliğe zarar olmaması için bu kesimin keun karda yapılmas uygun. Tamamlama dikimleri işık kesimini takiben yapılmalıdır. Böylece dikilecek fidanların alanın başlatexması esnasında zarar görmesi önlenmiş olur. 2 m² den çok olan boşluklar üzerinde tamamılamalar gerek vardır (Saatçioğlu, 1979). Tamamlama dikimlerinde kullanlanacak fidanlar, aynı ve yakın meşcereleden toplanmış tohumları dan elde edilen fidan olmalıdır. Gençliğin fıça biçiminde olduğu alanlarda toplu kurumlar olabilir. İşık kesimini takiben fıça biçimindeki gençlikler kesilerek seyreltilmelidir.
6.1.4 Boşaltma Kesimi

Doğu ladini yayılış alanlarında diri örtünün yıllık boyu ortalamada 1 m ye ulaşmaktadır. Bu boya ulaşamayan (70 - 80 cm) fidan ladinin doğal yayılış alanlarında diri örtünün yıllık boyu ortalamada 1 m ye ulaşmaktadır. Doğu ladini gençliği 70 - 80 cm boya bonitlere göre 12 - 16 yaşında ulaşılacaktır (Eyüboğlu, Atasoy, 1989). Bu nedenle gençliğin seyrek ve diri örtünün yoğun olduğu alanlarda boşaltma kesimi yukarıdaki yaşlarda yapılmalıdır. Gençliğin sık ve diri örtünün zayıf olduğu alanlarda boşaltma kesimi daha erken yaşlarda yapılabilir.

Boşaltma kesimi de iktisad kıyımda olduğu gibi kısmında yapılmalıdır.

6.2 Karışık Doğu Ladini Meşcereleri

Kültür çalışmalarda bazı ağaç türlerimizin büyüme ilişkilerine ait veriler elde edilmişdir. Bu verilere göre; 1 m boya ulaşmak için 3 + 0 yaşında dikilen Doğu ladini ve Doğu Karadeniz Göknarda gençliği geçen süreler ladininde; 9 - 12 yıl, göknarda 8 - 11 yıl. 2 + 1 yaşında dikilen Sançamda 7 - 8 yıl ve 2 + 0 yaşında dikilen (30 cm boyunda) Doğu Ka-
yınında 4 - 5 yıldır (Eyüboğlu, 1988). Diğer bir deyişle gençlikteki hızlı büyüme sıralanması Doğu Kayını, Sançam, Doğu Karadeniz Göknarı ve Doğu ladını biçimindedir.

Adı geçen türlerin yıllara göre doğal gençleştirme alanına doğal olarak getirilmeleri sıralanması yukarıdaki sıralamanın tersi olmalıdır. Aksi takdirde gençlikte hızlı büyüyen tür, yavaş büyüyen türden daha önce ya da aynı yılda ayrı alana getirilirse, yavaş büyüyen tür başkın alta alacak ve onu alandan uzaklaştıracaktır.

Doğu ladinin yayılış gösterdiği yerlerde diri örtü, açılmış alanlara yoğun ve boylu olarak gelmektedir. Diri örtünün gelişini engelleyen meşcere kapalılığıdır. Açık alanda ortalama 1 m boy tavanlıdir. Açık alanlarda çok zarar vermemesi için gençliğin en az 60 - 80 cm boyla ulaşmaya kadar üzerlerinin tamamen açılmaması gerekir.

Yaşam ortamında gençlik gelmiş alanlara karşıklığa istisnai ettilmesi istenen ağaç türleri, ya da temamıma dikimleri, ışık kesimlerini takiben yapılmalıdır. İleriki yıllarda yapılacak sıklik bakımlarıyla da karşıklığın istenen düzeyde oluşması sağlanmalıdır. Ladının karşıklık oluşturduğu meşcerelelerde, karşıklığa istisnai eden türler, çoğu kez kazık kökü türlerden oluşturulan, bu tür meşcerelelerde rüzgar devirme ihtimali, saf ladın meşcerelelerine göre daha azdır. Şerit yerine (20 - 40 m), zonlar üzerinde (70 - 110 m) çalışılırak müdahale cephesi sayısını ve dolayısıyla yapılacak işlerin bir araya toplanması sağlanabilir.

Saf grup, etek şeridi grup ve etek şeridi seçme işlemlerinde gençleştirme hızı yavaş, gençleştirme süresi ise uzundur. Bu işleme 96

Kombine grup işletmesi (Bavyera kombine metodu) esas olarak grup siper durumuya etek seridi gençleştirme durumunu kullanır. Fakat gerektiririnde etek seridi genişletilerek zon siper durumuna ya da daraltılara kenar durumuna dönüştürülebilir.

Doğu ladininin karışma işlendiği meşçerelerde, araştırma sonuçlarına dayalı doğal gençleştirme çalışmaları olmadığından, genel bilgi, gözlem, bazı kültür çalışmaları ile literatürden elde edilen bilgiler re dayalı olarak kullanılabilecek gençleştirme yöntemleri aşağıda sunulmuştur.

6.2.1 Ladın + Kayın (L + Kn) Mescereleri

Karasında Doğu ladinin oranının 0.6 ve daha fazla olduğu, yani doğu ladinin temel meşçereyi; oluştuşduğu karışık ormanlarda kayını gruptalar halinde gençleştirme gerekir. Kombine grup işletmesi metoduna göre ise gençlikte yavaş büyüyen doğu ladinine yaş ve boy üstünkülü vermek gerekeceğinden büyük alanlarda ladin gençliği getirip yaşlı ladinler boştaltıldiktan sonra, yaşlı kayın gruplarının 3 - 4 yıl daha alanda bırakılması, hem fırtına devirme tehlikesi ve hemde kilitlenmiş gruplar oluşturması nedeniyle büyük sakıncalar doğurur. Bu bağmdan çizelge 3 de de görüldüğü gibi doğu ladinin yirmi yıl içinde yararlanabilecek 5 tohum yanında 3 periyodik alanda büyük alan siper durumuya gençleştirilmesi ve kayının karışımının gençlik bakımı evresi içinde yapay yoldan sağlanması doğru olur (ATAY, İ. et al 1989).

Üzeri 6 - 7 yıl sonunda açılan doğu ladinin gençliklerinde oluşacak dini örtüye karşı mücadele etmek mecburiyeti ciddu için (Ata, 1980) Çizelge 3 de önerildiği gibi 4. yılda ışıklandırma kesimi 7. yılda da bo-

97
Çizelge 3. Ladin + Kayın karışık meşçeleri gençleştirmeye vazo-yet planı

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Tohum Yılları</th>
<th>Periyodik Alanlar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>Kn</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>Kn yapay</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>Kn yapay</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LTK : Ladin tohumlama kesimi
LIK : Ladin ışık kesimi
LBK : Ladin boşaltma kesimi

(Atay, İ. et al. 1989)

6.2.2 Kayın + Ladin (Kn + L) Meşçereleri

Kanışında kayın oranının 0.6 ve daha fazla olduğu yani kayının temel mesçereyi oluşturdugu kanış ormanlarında ladin gençlikte yavaş büyümüştü 9 - 10 yıllık bir yaş üstünlüğü vermek gerekmektedir. Çizelge 4 de görüleceği gibi 20 yıllık gençleştirme periyodunun ilk yıllarında ladini, ikinci yıllarında da kayını gençleştirme suretiyle anacak ladinde kayınlara karşı 10 yıllık yaş farkını sağlamak mümkün olabilir.

Çizelge 4. Kayın + Ladın karışık meşcerele rin gençleştirme yavaş-yet planı

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Tohum Yılları</th>
<th>Gençleşme alanı</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>Kn</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LGK : Ladın grup siper kesimi
KnTK : Kayın tohumlama kesimi
(ATAY'lı et alı 1989).

100

6.2.3 Ladin + Göknar + Sarışam (L + G + Ça) Meşçereleri

İşik ağaçları olan sarışam, yarı göğe ağaçları olan ladin ve göğe ağaçları olan göknarın gençleştirilmesinde kenar durumunu metoduğun uygun kalacağını bildirilmektedir. “Kenar durumunda, karanlık ağaç meşçere siperinden kenar iç sahası, sonrasında kenar dış sahası alanlarında doğru geçişe, işık, sıcaklık ve rutubet şartlarında derecelenerek farklılar oluşur. Ağaç türleri kendi isteklerine uygun şartlara kavuştuğu gençlikleri alanda yerini alır. Bir meşçere kenarının şart kılan, kenar iç sahası + kenar dış sahasından oluşan bir şeritte gençliğin elde edildiği bu metotda da kenar vaziyetinin yarattığı şeritin cephe ve uzanış yönünü tayininde gene kesim anahatı prensiplerine uyulması gereklidir. Meşçere kenar çizgisi ile daima ikili bölünen bu şeritte kenar iç sahası en az 1/2, en çok 2 ağaç boyu, kenar dış sahası da en az 1/2 ağaç boyu, en çok 2/3 ağaç boyu olur. En azlar toplandığında gençleş-
me bir ağaç boyu genişlikte bir şeritle sevredecek değildir ki buna kapalı kenar vaziyeti denir. Çünkü esas alındığa göre bir ağaç boyu genişlikte bir şeritle sevredecek değildir ki buna gevsetilmiş kenar vaziyeti denir.

Diğer taraftan, Ülkemizdeki Sarıçam + Kayın + Ladin + Göknar karışık meşcerelerinde, göknar ve kayı veya gruplar içinde elde ederken, ladinı de aynı şekilde gruplarda grup siper vaziyeti elle elde etmek ve çamı etekleri siper ya da traslama vaziyetlerinden biri ile alana getirilenin zorunlu olduğu bildirilmektedir (Ata, 1987).
Yöre ormanlarında yaptığımız gözlemlere göre; göknar gençliğinin gelmesi, meşcere hangi karışıklık tipinde olursa olsun, bir sorun olmamaktadır, hatta bazı alanlarda bu türü ait gençliğin çok gelişti sorunu ya-ratmaktadır.

Göknarda, karışıklıkta hektarda 10 - 15 ağacın bırakılması dahi bu türü ait yetenek sayıda gençliğin gelişini sağlamaktadır.

Bu nedenle, göknarın karışık olduğu meşcerelerde, göknarın gençleştirilmesinin gözönüne alınmasına gerek olmadığı kanısına varılmıştır.

Karışık meşcerelerin rüzgara daha dayanıklı olduğu göz önüne alınımında Ladin + Göknar + Sarıçam meşcerelerinin zon siper, meşcere genişliği fazla ise büyük olan siper vaziyetle de gençleştirilmesi düşünülebilir.

Seçilen ilk müdahale cephelerinde 70 - 110 m genişliğinde zonlar oluşturulur. Ladin zengin tohum yılından 0.6 ya düşürülür ve arazi hazırlanır.

Bu durumda bu tip meşcere rin özel gençleştirme süresi 12 yıl olmaktadır.

Genişliği 900 m olan bir meşcerenin gençleştirilmesinde, zon genişliği 100 m alınip, 3 müdahale cephesinde çalışılsa, bu meşcerenin
genel gençleştirme süresi 20 yıl olacaktır. Zira ladinde 4 yılda bir zengin tohum olduğundan, ikinci ve üçüncü zonlardaki, ladın tohumlama kesimleri ilk zonundan sırasıyla 4 ve 8 yıl sonra olacak ve dolayısıyla bu durumda gençerenin gençleştirilmesi 20 yılda tamamlanacaktır.

Karışık meşcerelere ait ağaçların karşılıklı büyüme ilişkileri henüz tam anlamıyla ortaya konulmamış olduğundan, bu tip meşcerelere istenilen karşılığın devam ettirilmesinde, gençlik ve sıklık bakımları çok daha önem kazanır.

KAYNAKÇA

ATAY, İ. 1982 Doğal Gençleştirme Yöntemleri II. İ.Ü. Or. Fak. Yayınları No : 306, 84 s.

OGM. 1980. Türkiye Orman ENVANTERİ Yayın No: 13

SAATÇİOĞLU, F. 1979. Silvikültür Tekniği, Silvikültür II. İ.Ü. Or. Fak. Y. No: 268

doğu ladininin yapay gençleştirilmesi
7 DOĞU LADINİNIN YAPAY GENÇLEŞTİRİLMESİ

Doğu Karadeniz Yöresinde yayılış gösteren ve saf olarak 135959 ha lik alan kaplayan Doğu ladıni meşcerelerinin yaklaşık 40.000 ha lik bölümü doğal gençleştirmeye elverişlidir. Geri kalan 96.000 ha lik bölümü yapay gençleştirme zorunludur.

Diğer taraftan Doğu ladıni'nin karışık olduğu meşcerelerin alanı da yaklaşık 200.000 ha dir (Ata, Yahyaoğlu, Atasoy, 1983). Bu alan üzerinde meşcerelerin iyimsel bir görüşle üçte birinin doğal gençleştirme meyve kuru olduğu kabul edildiğinde, yapay gençleştirme yazar alandan miktarı 133.000 ha olacaktır. Bu alanlarda kurulacak karışık ormanlarında Doğu ladıni'nin karışıklığı 2/5 oranında katılacağı (53,000 ha) düşünülürse bu durumda Doğu ladıni'nin yapay gençleştirme alanı 96.000 + 53.200 = 149.200 ha olacaktır.

İdare süresi ortalama 100 yıl olarak kabul edilen Doğu ladıni'nde her yaşta kültür ormanı tesis için, yılda en az 1500 ha lik alanda dikim yapılması gerekecektir.

7.1 Arazi Hazırlığı

7.1.1 Diri Örtü Temizliği

Diri örtü otsu, odunsu ve karışık biçimdedir. Burada diiri örtü türlerini ve yoğunluklarını kısaca tanımlamakia yarar görülmektedir.

Diri Örtü Türü:

a- Otsu - Genellikle özgürlüten (Rubus spp.) ve yer yer eğrelti- ler (Pteridium, Athrium, Dryopteris), lsırgan (Urtica sp.) ve otsu mürver (Sambucus ebulus) ile kaplı alanlar.
b- Odunsu: Çok yoğunukla Orman gülleri (Rhododendron ponticum, R. caucasicum, R. smirvoii, R. luteum) ve da- ha az olarak karayemiş (Laurocerasus officinalis). Aynı üzüm (Vaccinium arctostaphylos), Çoctsan püsküllü (Ilex colchica) ve Artvin Bölgesinde Doğu Karadeniz Meşesi (Quercus pontica) ile kaplı alanlar.

c- Karışık: Yukarıda belirtilen otsu ve odunsu bitkilerin karışım oluşturdukları alanlar.

Yoğunluk:
a-Az yoğun: Otsu bitkilerle kaplı alanlarda seyrekgüörtlen, da- ha çok eğretili ve diğer bitkilerle kaplı, içinde rahat- likla dolaşılabilen yerlerdir. Odunsularda ise küme- ler halinde ormandaküllerinin boşluğunu dağıltımı ifa- de eder. Boyları 0.5 - 1 m. kadardır. Örteme oranı % 50 civarındadır.

b- Orta yoğun: Genellikle tam kapalı alanlar olup otsulardan bó- gürtlen ve diğerlerinin odunsulardan orman güllü vb. oluşturduğu bu tür yerleri içerisinde zorluğla giril- lebilir olarak tanımlamak uygun olur.

c- Çok yoğun: Gerek büyüklerlerin gerekse orman güller ile di-ğer odunsuların giriift kapalığını ifade eden alanlar olup, içerisinde girmek mümkün değildir. Zorlukla üzerinde dolaşılabilir. Özellikle orman güllerinin çok tabakalı olarak toprağın altında başlayan yuka- ri doğru birkaç gövdelerinden oluşmuş, boyları 1 m den fazla bitkilerle kaplı alanları ifade etmektedir. 40 m² lik deneme parseellerinin bazılarından 1.5 - 2 ster odun çıktığu tesbit edilmiştir.
Diri örtü 3,5 m genişliğinde şerit halinde tesviye eğrileine paralel olarak kesilecek biçimde kesilmeli ve çıkan emval, kesilmeden bırakılan 1,5 m genişliğindeki şerit üzerine yığmalıdır. Bu yığma işlemi, altta kesilmeden bırakılan diri örtünün ışık almasını engelleyerek, onun gelişimini yavaşlatmak ve bazı durumlarda kurumasını sağlamakta. Eğer kesilen şeritten çıkan diri örtü çok olur ve 1,5 m genişliğinde bırakılan şerit hacimli sığmazsa, fazlası olan miktar tahmin edilmeli ve bu alanda çıkarılmalıdır. Aksi takdirde, yıkan bu diri örtü alttaki şerite kayacak ve buradaki fidanlara zarar verecektir. Kaymayı önleyebilmek için; bırakan şeritteki ırmangülleri, yamaç üst tarafından toprak seviyesinde, alt tarafında ise yüksek kesilerek, şeritin üst yüzeyinin yamaç doğru hafif meyilli olması bir tedbir olarak düşünülebilir.

Kesilen ırmangüllünden oluşacak sürgünlerin dikilen fidanlara zararlı duruma gelmebilmesini 5 - 6 yıl aldığı gözlemliyoruz.

Diri örtünün şeritler halinde kesilerek şerit aralarına yığınlanma işine ilişkin standart zamanlar, diri örtü türine bağlı olarak Çizelge 1-a, Çizelge 1-b ve Çizelge 1-c de gösterilmiştir.

Çizelge 1’in Kullanılması:

Ağaçlandırma ya da yapay gençleştirme yapılacak alanda 3 - 4 yerden rastlantısal olarak alınan parsellerde diri örtü kesilir ve m² deki ağırlık, şeritlerde temizlik yapılacağı (3.5 + 1.5 m ise) 7000 ile çarpıarak ton olarak bulunun rakam hangi tür ve yönlüğün grubundan ise o tablodan standart zamanı okunur. Çizelgede bulunmayan ağırlıklar için çizelgelerin altında verilmiş olan regresyon formüllündeki (ÖA) ye-rine istenen ağırlık konularak bulunan değere, Derecelendirme (0.15), Anfü pay (0.05) ve Dinlenme payı (0.20) eklenerek standart zamanı bulunur.
Çizelge 1-a: Otsu Diri Örtü ile Kaplı Alanlarda Diri Örtünün Şeritler Halinde Kesilerek Şerit Aralarına Yığınlanma İşine İlişkin Standart Zamanlar (Şirin, 1988).

<table>
<thead>
<tr>
<th>Hadaki (7000 m²)</th>
<th>AzYoğun Standart Zaman İşgünü/Ha (7000 m²)</th>
<th>Ortayoğun Standart Zaman İşgünü/Ha (7000 m²)</th>
<th>ÇokYoğun Standart Zaman İşgünü/Ha (7000 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7.0</td>
<td>10.5</td>
<td>19.0</td>
</tr>
<tr>
<td>4</td>
<td>8.3</td>
<td>11.4</td>
<td>19.4</td>
</tr>
<tr>
<td>5</td>
<td>9.6</td>
<td>12.3</td>
<td>19.7</td>
</tr>
<tr>
<td>6</td>
<td>10.9</td>
<td>13.2</td>
<td>20.0</td>
</tr>
<tr>
<td>7</td>
<td>12.2</td>
<td>14.1</td>
<td>20.3</td>
</tr>
<tr>
<td>8</td>
<td>13.5</td>
<td>15.0</td>
<td>20.7</td>
</tr>
<tr>
<td>9</td>
<td>14.8</td>
<td>15.9</td>
<td>21.0</td>
</tr>
<tr>
<td>10</td>
<td>16.1</td>
<td>16.8</td>
<td>21.3</td>
</tr>
<tr>
<td>11</td>
<td>17.4</td>
<td>17.7</td>
<td>21.6</td>
</tr>
<tr>
<td>12</td>
<td>18.7</td>
<td>18.6</td>
<td>21.9</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>19.5</td>
<td>22.3</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>20.4</td>
<td>22.6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>21.3</td>
<td>22.9</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>22.2</td>
<td>23.2</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>23.2</td>
<td>23.6</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>24.1</td>
<td>23.9</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>25.0</td>
<td>24.2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>25.9</td>
<td>24.5</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>24.5</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>25.2</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>25.5</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>25.8</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>26.1</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>26.4</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>26.8</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>27.1</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>27.4</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>27.8</td>
</tr>
</tbody>
</table>

AzYoğun DÖTZ = 2.12739 + 0.89719 (ÖA)
\[r = 0.544^{**}(0.01) \]
\[\text{Syx} = 0.2566 \]

Ortayoğun DÖTZ = 5.35330 + 0.62563 (ÖA)
\[r = 0.580^{**}(0.01) \]
\[\text{Syx} = 0.4959 \]

ÇokYoğun DÖTZ = 12.46734 + 0.22322 (ÖA)
\[r = 0.264 \]
\[\text{Syx} = 0.4388 \]

DÖTZ = Diri örtünün 1 ha 7000 m² için temizleme zamanı
ÖA = Diri örtünün 1 ha 7000 m² ton olarak yaş ağırlığı
r = İlişkinlik katsayısı
Syx = Standart hata

<table>
<thead>
<tr>
<th>Az Yoğun</th>
<th>Orta Yoğun</th>
<th>Çok Yoğun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alandaki diri örtünün yaş ağırlığı (ton/ha)</td>
<td>Alandaki diri örtünün yaş ağırlığı (ton/ha)</td>
</tr>
<tr>
<td></td>
<td>(7000 m²)</td>
<td>(7000 m²)</td>
</tr>
<tr>
<td>3</td>
<td>13.8</td>
<td>20.</td>
</tr>
<tr>
<td>4</td>
<td>14.3</td>
<td>22.</td>
</tr>
<tr>
<td>5</td>
<td>14.7</td>
<td>24.</td>
</tr>
<tr>
<td>6</td>
<td>15.2</td>
<td>26.</td>
</tr>
<tr>
<td>7</td>
<td>15.6</td>
<td>28.</td>
</tr>
<tr>
<td>8</td>
<td>16.1</td>
<td>30.</td>
</tr>
<tr>
<td>9</td>
<td>16.5</td>
<td>32.</td>
</tr>
<tr>
<td>10</td>
<td>17.0</td>
<td>34.</td>
</tr>
<tr>
<td>11</td>
<td>17.4</td>
<td>36.</td>
</tr>
<tr>
<td>12</td>
<td>17.9</td>
<td>38.</td>
</tr>
<tr>
<td>13</td>
<td>18.4</td>
<td>40.</td>
</tr>
<tr>
<td>14</td>
<td>18.8</td>
<td>42.</td>
</tr>
<tr>
<td>15</td>
<td>19.3</td>
<td>44.</td>
</tr>
<tr>
<td>16</td>
<td>19.7</td>
<td>46.</td>
</tr>
<tr>
<td>17</td>
<td>20.2</td>
<td>48.</td>
</tr>
<tr>
<td>18</td>
<td>20.6</td>
<td>50.</td>
</tr>
<tr>
<td>19</td>
<td>21.1</td>
<td>52.</td>
</tr>
<tr>
<td>20</td>
<td>21.5</td>
<td>54.</td>
</tr>
<tr>
<td>21</td>
<td>22.0</td>
<td>56.</td>
</tr>
<tr>
<td>22</td>
<td>22.4</td>
<td>58.</td>
</tr>
<tr>
<td>23</td>
<td>22.9</td>
<td>60.</td>
</tr>
<tr>
<td>24</td>
<td>23.4</td>
<td>62.</td>
</tr>
<tr>
<td>25</td>
<td>23.8</td>
<td>64.</td>
</tr>
<tr>
<td>26</td>
<td>24.3</td>
<td>66.</td>
</tr>
<tr>
<td>27</td>
<td>24.7</td>
<td>68.</td>
</tr>
<tr>
<td>28</td>
<td>25.6</td>
<td>70.</td>
</tr>
<tr>
<td>29</td>
<td>25.9</td>
<td>72.</td>
</tr>
<tr>
<td>30</td>
<td>26.1</td>
<td>74.</td>
</tr>
</tbody>
</table>

Az yoğun DÖTZ = 8.83833 + 0.31434 (ÖA)

Orta yoğun DÖTZ = 24.16915 + 0.06435 (ÖA)

Çok yoğun DÖTZ = 40.10021 + 0.02421 (ÖA)

r = 0.402** (0.01)

Syx = 0.7204

r = 0.163

Syx = 0.7204

r = 0.141

Syx = 2.160
Çizelge 1-c: Kanışık (Odüns + Otsu) Diri Örtü ile Kaplı Alanlarda
Diri Örtünün Şertileri Halinde Kesilerek Şerit Aralarına Yığılanması İçişine İlişkin Standart Zamanlar (Şi-
rin, 1988).

<table>
<thead>
<tr>
<th>Az Yoğun</th>
<th>Orta Yoğun</th>
<th>Çok Yoğun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az Yoğun DÖTŻ = 6.88759 + 0.41695 (OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.530** (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syx = 0.5648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orta Yoğun DÖTŻ = 15.05144 + 0.25516 (OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.564** (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syx = 0.71234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çok Yoğun DÖTŻ = 22.96479 + 0.10397 (OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = 0.676** (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syx = 2.9520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Az Yoğun (ton/ha)</th>
<th>Orta Yoğun (ton/ha)</th>
<th>Çok Yoğun (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (1000 m^3)</td>
<td>20 (1000 m^3)</td>
<td>30 (1000 m^3)</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>15.0</td>
</tr>
<tr>
<td>6</td>
<td>13.6</td>
<td>16.0</td>
</tr>
<tr>
<td>7</td>
<td>14.2</td>
<td>17.0</td>
</tr>
<tr>
<td>8</td>
<td>14.8</td>
<td>18.0</td>
</tr>
<tr>
<td>9</td>
<td>15.4</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>16.0</td>
<td>20.0</td>
</tr>
<tr>
<td>11</td>
<td>16.6</td>
<td>21.0</td>
</tr>
<tr>
<td>12</td>
<td>17.2</td>
<td>22.0</td>
</tr>
<tr>
<td>13</td>
<td>17.8</td>
<td>23.0</td>
</tr>
<tr>
<td>14</td>
<td>18.4</td>
<td>24.0</td>
</tr>
<tr>
<td>15</td>
<td>19.0</td>
<td>25.0</td>
</tr>
<tr>
<td>16</td>
<td>19.6</td>
<td>26.0</td>
</tr>
<tr>
<td>17</td>
<td>20.2</td>
<td>27.0</td>
</tr>
<tr>
<td>18</td>
<td>20.9</td>
<td>28.0</td>
</tr>
<tr>
<td>19</td>
<td>21.4</td>
<td>29.0</td>
</tr>
<tr>
<td>20</td>
<td>22.1</td>
<td>30.0</td>
</tr>
<tr>
<td>30</td>
<td>36.6</td>
<td>39.5</td>
</tr>
<tr>
<td>40</td>
<td>37.3</td>
<td>40.2</td>
</tr>
<tr>
<td>50</td>
<td>38.0</td>
<td>40.9</td>
</tr>
<tr>
<td>60</td>
<td>38.8</td>
<td>41.7</td>
</tr>
<tr>
<td>70</td>
<td>39.6</td>
<td>42.5</td>
</tr>
<tr>
<td>80</td>
<td>40.3</td>
<td>43.2</td>
</tr>
<tr>
<td>90</td>
<td>41.1</td>
<td>44.0</td>
</tr>
<tr>
<td>100</td>
<td>41.9</td>
<td>44.7</td>
</tr>
<tr>
<td>110</td>
<td>42.7</td>
<td>45.5</td>
</tr>
<tr>
<td>120</td>
<td>43.5</td>
<td>46.2</td>
</tr>
<tr>
<td>130</td>
<td>44.3</td>
<td>47.0</td>
</tr>
<tr>
<td>140</td>
<td>45.1</td>
<td>47.5</td>
</tr>
<tr>
<td>150</td>
<td>45.9</td>
<td>48.0</td>
</tr>
<tr>
<td>160</td>
<td>46.7</td>
<td>48.5</td>
</tr>
<tr>
<td>170</td>
<td>47.5</td>
<td>49.0</td>
</tr>
<tr>
<td>180</td>
<td>48.3</td>
<td>49.5</td>
</tr>
<tr>
<td>190</td>
<td>49.1</td>
<td>50.0</td>
</tr>
<tr>
<td>200</td>
<td>50.0</td>
<td>50.5</td>
</tr>
</tbody>
</table>

Az Yoğun DÖTŻ = 6.88759 + 0.41695 (OA)
r = 0.530** (0.01)
Syx = 0.5648

Orta Yoğun DÖTŻ = 15.05144 + 0.25516 (OA)
r = 0.564** (0.01)
Syx = 0.71234

Çok Yoğun DÖTŻ = 22.96479 + 0.10397 (OA)
r = 0.676** (0.01)
Syx = 2.9520
Örnek: Orman gülü, çok yoğun, 500 ton (yaprağıyla birlikte)

\[
DÖTZ = 40.10021 + (0.02421 \times \text{OA})
\]

\[
= 40.10021 + (0.02421 \times 500) = 52.2052 \text{ gerçek çalışma süresi standard zaman - iş günü / ha (7000 m}^2)\]

Bu zamanı;

Derecelendirme: \(52.2052 \times 0.15 = 7.83\)

Arıza payı: \(\left[(52.20 \times 0.15) + 52.20 \right] \times 0.05 = 3.00\)

Dinlenme payı: \(\left[(52.20 \times 0.15) + 52.20 \right] \times 0.20 = 12.00\)

eklererek gerçek zaman = 75.03 iş günü/harik olarak bulunur.

7.1.2 Toprak İşleme

Arazinin topografik yapısı, toprağın tekstür, taşılık durumu ve topraktaki kök yoğunluğuna göre 0.80 x 0.80 x 0.35 m boyutunda toprak işleme süresine ilişkin yoğun - emek standart zaman etüdleri Çizelge 2 de verilmiştir.

Toprak işlemesi dikimden 30 - 60 gün önce tamamlanarak toprağın az da olsa tava gelmesi sağlanmalıdır. Toprağın ağır olduğu yerlerde işlemmiş toprağa sızmının birikmesine karşı önlem alınmalıdır.

7.2 Dikim

7.2.1 Fidan Niteliği

Ağaçlandırma Çalışmalarında kullanılan fidanlar, "Doğu Ladini Tohum Transfer Rejyonlaması" haritasında belirtilen sınırlar içerisinde toplandığı tohumlardan elde edilmelidir (Atalay, 1984) (Bölüm 9 Harita 1).

Tohum transferi yatay yönde bakı taktörü de göz önüne alınarak en çok 150 km içerisinde, dikey yönde ise (+ 150 m) ile (- 200 m) yükseklikler arasında gerçekleşilebilir. Tohum meşceresi bulunmayan alt rejyonlara, aynı rejyonun bitişik alt rejyonundan bakı ve yükseklik durumları dikkate alınarak tohum transferi yapılabılır (Atalay, 1984).
Çizelge 2.: Toprağın 80 x 80 Boyutlarında 35 cm Derinlikte Kesik Teras Şeklinde İşlenmesi İşine İlişkin Standart Zamanlar (1000 adet için) (Şirin, 1988).

<table>
<thead>
<tr>
<th>Eğim %</th>
<th>Kökülük Taşlılık</th>
<th>Kaba tekstür Standart Zaman (İşgünü/1000 adet)</th>
<th>İnce tekstür Standart zaman (İşgünü/1000 adet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ortalama S. Zaman</td>
<td>Güven Aralığı (0.01)</td>
</tr>
<tr>
<td>0 - 30</td>
<td>Az taşlı</td>
<td>6.8</td>
<td>0.637</td>
</tr>
<tr>
<td></td>
<td>Az kökülü Orta taşlı</td>
<td>10.4</td>
<td>1.308</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>13.7</td>
<td>1.616</td>
</tr>
<tr>
<td></td>
<td>Az taşlı</td>
<td>10.4</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td>Orta kökülü Orta taşlı</td>
<td>14.0</td>
<td>1.677</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>17.2</td>
<td>2.080</td>
</tr>
<tr>
<td></td>
<td>Az taşlı</td>
<td>19.6</td>
<td>1.006</td>
</tr>
<tr>
<td></td>
<td>Orta kökülü Orta taşlı</td>
<td>21.5</td>
<td>1.006</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>25.4</td>
<td>1.241</td>
</tr>
<tr>
<td>30 - 60</td>
<td>Az taşlı</td>
<td>7.4</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td>Az kökülü Orta taşlı</td>
<td>11.9</td>
<td>2.449</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>15.3</td>
<td>1.543</td>
</tr>
<tr>
<td></td>
<td>Az taşlı</td>
<td>12.9</td>
<td>1.006</td>
</tr>
<tr>
<td></td>
<td>Orta kökülü Orta taşlı</td>
<td>14.5</td>
<td>2.382</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>20.5</td>
<td>2.013</td>
</tr>
<tr>
<td></td>
<td>Az taşlı</td>
<td>19.6</td>
<td>2.214</td>
</tr>
<tr>
<td></td>
<td>Çok kökülü Orta taşlı</td>
<td>23.3</td>
<td>1.342</td>
</tr>
<tr>
<td></td>
<td>Çok taşlı</td>
<td>27.6</td>
<td>1.843</td>
</tr>
<tr>
<td>Taşlılık</td>
<td>Orta Taşılı</td>
<td>Çok Taşılı</td>
<td>Çok Köklü</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Az Taşılı</td>
<td>8.7</td>
<td>15.3</td>
<td>24.2</td>
</tr>
<tr>
<td>Orta Taşılı</td>
<td>13.8</td>
<td>21.4</td>
<td>26.2</td>
</tr>
<tr>
<td>Çok Taşılı</td>
<td>13.9</td>
<td>17.9</td>
<td>23.4</td>
</tr>
<tr>
<td>Az köklü</td>
<td>17.9</td>
<td>21.4</td>
<td>23.4</td>
</tr>
<tr>
<td>Orta köklü</td>
<td>13.1</td>
<td>19.4</td>
<td>26.4</td>
</tr>
<tr>
<td>Çok köklü</td>
<td>25.0</td>
<td>28.6</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Taşlılık = Topraktaki taşı kargının topak hacim içindeki oranını ifade eder.

Köklük = Topraktaki kök kargının topak hacim içindeki oranını ifade eder.

Kaba Tekstür = Kil oranı %25' den az olan kum, balçığı kum, tozlu bilikli balçık, kumlu bilikli topraklar kapsar.

İnce Tekstür = Kil oranı %25 den %50'ye kadar olan, tozlu bilikli balçığı, tozlu bilikli bilikli, tozlu bilikli, tozlu kum, kumlu kum, tozlu kök kargı, kumlu kök kargı, kumlu Kök kargı kapsar.

Çizelge 2'nin Devamı
Doğu Karadeniz Yöresinde yoğun ve boylu dişi örtünün nedeniyle, dikilecek fidanlar 25 cm den daha boylu olmalıdır. Fidan bu boya alacak rakımlardaki fidanlıklarda 2 + 2 yaşında, yüksek rakımlardakilerde ise 3 + 2 yaşında ulaşabilmektedir.

Dört ya da beş yaşında iken dikilecek Doğu ladını fidanlarında bu oran, fidanın iki ya da üç yaşında iken şaşırtılmasıyla elde edilebilmektedir (Yerinde kök kesimi henüz denenmemiştir).

7.2.2 Dikim ve Aralik - Mesafe

Doğu ladindende, vejetasyon mevsimi öncesi ve vejetasyon mevsemi sonrası yapılan dikimlere ek olarak 1 Ağustos - 15 Eylül tarihleri arasında da kuzey, kuzey - batı ve kuzey - doğu bakımlarında güvenle de dikimler yapılabilir (Eyüboğlu, Atasoy, 1977).

Dikim zamanında, fidanların soğuk hava deposunda saklanması ve açığa alınmasına rağmen toprağın işlemesine uygun bir yerinde şaşırtma alınamaz. Şarşıya işlemi ilk bahar, sonbahar ve 1 Ağustos - 15 Eylül tarihleri arasında toprağın is- lak ve havanın bulutlu olduğu günlerde yapılabilir.

0.80 x 0.80 x 0.35 m boyutlarında işlenmiş toprağa çapa ile çukur açılır ve fidan arazi meyilinin işlenmiş toprağı kestiği yere dikilir. Toprağın, köklüük, taşlılık oranları ve tekstürüne göre dikim işine ilişkin standard zamanları Çizelge 3 te gösterilmiştir.
<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>2.7</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.9</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>5.2</td>
<td>7.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.0</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>2.7</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.9</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>5.2</td>
<td>7.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.0</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>2.7</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.9</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Köklük</th>
<th>Taşılık</th>
<th>Kaba Tekstür</th>
<th>Örta Tekstür</th>
<th>İnce Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az kökü</td>
<td>Ortalama</td>
<td>5.2</td>
<td>7.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Çok kökü</td>
<td>Ortalama</td>
<td>8.0</td>
<td>12.7</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Dikimde, diğer tüm ağaç türlerinde uygulanan genel kurallar uygulanır (Köklер güneşe maruz bırakılmaz, kırılmaz, çukurda hava boşluğunu bırakılmaz, toprak ayakta yerinice sıkıştırılır vb.).

Dikimi takip eden yıl, başarı sağlanamayan yerlerde tamamlama dikimleri yapılır.

Orman Genel Müdürlüğü'nce Doğu ladindende dikim aralığı - mesafesi 2 x 2 m ve 2.5 x 1.5 m önerilmektedir. Çoğu ağaç türlerimizde olduğu gibi, Doğu ladindende de boni'tlere göre dikimde aralık - mesafenin ne olması gerektiğini ilişkin araştırma sonucu yoktur. Bunların belirlenebilmesi için, Doğu ladini dikimi yapılan her bir Orman İşletme Müdürlüğü'nde, en az üç alanda, her bir alanda, her bir aralık - mesafe için (1 x 1 m, 2 x 1 m, 2 x 2 m, 3 x 2 m, 3 x 3 m) 1 er hektardan az olma olan alanlarda dikimler yapılarak bunların yerlerinin krokiendirirlər hem ilgili işletmede bulundurulması hem de Doğu Karadeniz Ormanlık Araştırma Müdürlüğüne verilmesi, Doğu ladindende aralık - mesafe sorununun çözümlemesi için gerekli görülmektedir.

7.2.3 Siper Altı Dikimi

Doğu ladindinde yapay gençleştirmeye konu olan meşçereler 0.5 kapalılığın altında olan meşçerelerdir (Bak: Bölüm 6, Çizelge 1). Bugüne kadar uygulamalarda bu tür alanlarda mevcut ağaçlar traslama kesilerek, diri ortu temizliği ve toprak işlemesi yapıldıktan sonra dikim yapılmaktadır. Yalnız son yıllarda, elde yeterince büyük doğu ladini fidanı bulunmadığı, küçük ve repikajsız fidanlarla yapay gençleştirmeye yapılan açık alanlarda diri ortünün çok yoğun bir şekilde geldiği, siperin ise diri ortünün gelişini önemli derecede etkileyeceği gerekçeleri öne sürülen "Siper Altı Dikimi", (Under planting) önerilmektedir. (Ata, 1988). Yani 0.3 - 0.4 kapali meşçerelerde üstteki siper ağaçlarını korunan - siper altında dikim yapılabileceği ileri sürülmektedir. Boşaltma kesimi esnasında meydana gelebilecek zayıata karşı ise dikim aralıklan-

Bu görüşler ışığında, doğu ladinde siper altı dikimin asıl gereçesini oluşturan küçük ve repikajızız fidan yerine boylu ve repikajlı fidan üretilmesine ağırlık vermek gerekmektedir.

7.3 Kültür Bakımı

Yeterince toprak işlemesi yapılmış alanlarda dikimden sonra ilk vejetasyon mevsiminde bakım işlemine gerek olmadığı gözlenmiştir.

İkinci vejetasyon mevsiminde Haziran ayı sonlarında yapılacak bakım yeterli olabilmektedir. Bundan sonra fidan boy 50 cm boya ulaşıcaya kadar ści, fidan 70 - 80 cm boyunca ulaşıcaya kadar yılda bir kez (Haziran ayı içerisinde) bakım yeterli olabilmektedir.

Bakım yapılırken otsu bitkiler elle çekilerek sökülülmeli ve geveşeyen toprak ayakla sıkıştırılmalıdır. Böğürtlenler tam alanda köklenmiş olan, odunsu bitkiler fidan için zararlı duruma gelmişse bunlar kesilmelidir. Doğu ladininin kökleri sık olduğu için kök yayılış alanında çapa yapılmamalıdır.

Bir hektarlık alanın bir kez bakım için ortalama 33 işgününe (11 - 55 işgünü) gerek vardır (Atasoy, 1979).

Eğer dikim alanındaki kayıplar: münferit ya da küçük kümeler halinde ise, dikimi takip eden ilk ya da ikinci yılda, tamamlayacaği dikimleri ya Doğu ladı nı ya da Doğu ladını ile ilk yaşlarda yaklaşık hızda büyümeye ve o yörede yetişebilecek ağaç türleriyle yapılmalıdır (Örneğin, Doğu Karadeniz Gökna).
Dikimden 5 - 6 yıl sonra olabilecek kayıplarda, tamamlama dikimlerinde, ilk yaşta Doğu ladindenden hızlı büyüyen türler kullanılmalıdır (Uygun yerlerde kızılağaç, duglas, Avrupa ladini, Akçaağaç, Kayın vb.).

KAYNAKÇA

Ali Kenan EYÜBOĞLU

8

doğu ladini
meşcerelerinin
bakımı

Doğu Ladindede Gençlik Bakımı Kapıköy - Maçka
Foto: H. Atasoy
Doğu Ladıninde Sıkık Bakımı Kapıköy - Maçka
Foto: Ü. S. Erkuloğlu
8 DOĞU LADINI MEŞCERE GERİSİ BAKIMI

Bakım kesimlerinde, tüm ağaç türleri için geçerli olan aşağıdaki kurallara uyulmalıdır.

- Özellikle genç meşcere yerlerinde yapılacak kesimlerde, kusurlu veya büyüme biçimini nedeniyle komşularına zararlı olan bireyler uzaklaştırılmalıdır (Müsbet seleksiyon),
- Müsbet seleksiyona istikbal ağaç adaylarının çok olduğu çağda, yani erken yaşlarda başlanmalıdır.
- Kesimler her zaman yumuşak - yavaş (Tedriciyet) kuralına göre yapılmalı, ani olarak meşcere bünyesini sarsabilecek müdahalelerden kaçınılmalıdır.

8.1 Gençlik Bakımı

Gençlık bakımının amacı, tüm alanda iyi nitelikli bireyler elde etmek ve istenen türlerden oluşacak karşılığı sağılamaktır.

Doğu ladini gençliklerinin özellikle yoğun ve boylu bir ortaya karşı korunması gerekmek. Yüksek rakımlar da ise gençlik, diri ortu yanında sı-
cağılık, don ve doluya karşı da korunmalıdır. Bunu sağliyabilmek için gençlikler meşcere siperi altında elde edilmevi ve siperin bir süre korunmalıdır. Gençlik 20 - 40 cm boyu ulaşınca (l. Bonitette tohumlama kesiminden 8 yıl sonra gençlik 40 cm boya, V. Bonitette 12 yıl sonra 20 cm boya ulaşabilmektedir) meşcere kapalılığı 0.3 e düşürülmeli ve gençlik 70 - 80 cm boya ulaşınca (12 - 16 yaşında) gençliğinin üzerinde büyüme bozulmalıdır. Gençliğin bir kaç biçiminde gelmiş olduğu alanlarda toplu kurumlar olabileceğini nedeniyle, bu tıpteki gençliklerdeki fidanların bir bölümü kök boğazından kesilerek gençlik seyraltalmelidir.

Üstteki siperin yeterli olmadığı durumlarda, gençlik alanını diri örtüğe getirmektedir. Ot türü diri örtüş, gençlik boyunun 10 - 15 cm üzerinden orakla kesilmeli ve uzaklaştırılmalıdır. Bu işlem graminelerin tohumlarının olgunlaşmasından önce, yüksekliğe bağlı olarak, 20 - 121 temmuz'a kadar tamamlanmalıdır.

Ancak böğürtlence benzeyen ahududu'nun (Rubus idaeus) gençlik alanında bulunması zor olmaz. Böğürtlence iki buğdayın köklerini kalkırmada, 128

Eğrelti otları kuvvetli bir yağmurdan sonra elle köklenebilir. Sarılıcı bitkileri sürekli mücadele gerekir. Bu bitkiler köklenmeli ya da sık sık kök boğazlarından kesilmeli ve meyvaları yok edilmelidir.
Gençliğin boyu ortalama 1 m ye ulaşınca, fidanlar arasında 0.50 - 0.60 cm uzaklık kalacak biçimde seyretmeli yapılmalıdır. Seyretmeme öncelikle hastalıklı ve bozuk şekilli tertler çıkartmalıdır.

Gençlik 20 - 40 cm boyu ulaşınca işıklandırma kesimini ve bunun ardından tamamlama dikimini yapılmalıdır. 2 m² den çok olan boşluklar üzerinde tamamlama dikimine gerek olduğu bildirilmiyordur (Saatçioğlu, 1971). Tamamlama dikiminde kullanılacak olan fidanın orijini, ultrık yapılmak yerine uygun olmalıdır.

8.2 Sıklık Bakımı

Sıklık çağı, meşcere kapalılığının oluşmasından, kuvvetli dal bu danmasının ve gövde ayrılmının başlamasına kadar devam eden çağdır (Saatçioğlu, 1971).

Dallar birbirlerinin içerisine girip toprak tümüyle siperlendiğinde sıklık çağ başları oluşur.

Doğu ladininin de sıklık çağının başlaması, gençliğin sık ya da seyrek oluşuna bağlı olarak değişik sürelerde olur. Fırça biçimindeki sık gençliklerde gençlik 7 - 8 yaşına, çok seyrek gençliklerde (m² de 1 adet fidan) ise gençlik 20 - 25 yaşına ulaşınca sıklık çağ başlar.

Yakınlaşılığı sağlamak yönünden; Doğu ladininde sıkılık çığının başlanmış, gençliğin insan boyuna ulaştığı anda başlar denilebilir. Sıkışığın boyu insan boyu ve dağılıının homojen olduğu kabul edilerek, Doğu ladininde sıkılık çığı süresinde neler yapılması gerektiği aşağıda gösterilmiştir.

Bu sayisal değerlerin verilmesindeki amaç sıkılık çığında yapacağı kesim müdahalelerine ışık tutabilmek içinidir. Sıkılık çığı sürecinde
meşceredeği kayıplar çektir. Bu kaybolacak fertlerin önceden çıkarılması, kalanların daha geniş alan, doyayıyla fazla besin maddesi ve ışık almalarına fırsat verecektir.

Sıklık çağında gelişmesi güçlü olan fertler üst tabakada yer almayı başlar ve alta kalan fertleri baskı altına alarak meşcereye üst, ara ve alt tabakaların oluşmasına neden olurlar.

Genelde sıklık bakımının, genç meşcerelerin üst tabakasının zararlı ve işe yaramaz fertlerden tamizleninceye kadar 2 - 3 yıllık dönüş süresiyle 2 - 3 kesim müdahaleine dağıtılmaktadır (Saatçioğlu, 1971). Doğu ladinede çalışma koşullarının güçlüüğü nedeniyle dönüş süresinin I. ve II. boniteler için 4 - 6 yıl, III., IV ve V boniteler için 7 - 12 yıl olmak üzere 2 kesim müdahaleine dağıtılmaktadır önerilebilir.

Sıklık çağında yapılan kesim müdahaleine Ayıklama ya da Tâmizleme Kesimi denir.

Sıklık bakımından, ayıklama kesimiyle; hasta, yaracli, cılız, ölmüş ya da ömekte olan fertler uzaklaştırılduktan sonra, fena şekilli gövdel- ler (Kısa, yumuk, çatallı, çatallı gövdeler), üst tabakada gelecek meşcere kuruluşuna katılmayı istemeyen ağaç türüleri sırasıyla çıkarılır.

Sıklık kesimlerinde aşırıktan kaçınılamalı ve sıklığın sıklık olarak kalmamasına özen gösterilmelidir. Ara ve alt tabakalar çalışmayı zorlaştırılmalarına rağmen, belir bir dereceye kadar korunmalıdır.

8.3 Aralama

Sıklık çağından sonra ve sıklık doyasıyla kuvvetli tabii buhunma- nun başlamasından meşcere gençleşirmeye girinceye kadar, kapalılık-
devamlı olarak kirmadan ağaçların aralarında yaptıkları mücadele ve aktif müdahaleler yapan devamlı ve planlı kesimlere “Aralama”, “Aralama kesimleri” denir.

Sıklık bakımlarında, kesimlerin ağırlık noktası esas itibarıyle işe yararımayan fertler üzerinde toplandığı halde “Menti seleksiyon”; aralama madda istikbal vadeden yani en iyi gövdelerin yetiştirilmesi kaygısı başlar “Müsbet seleksiyon”. Aralama müdahaleleri meşcerenin direklik, sırıklık ve ağaçlık çağlarına şamil bakım tedbirleridir (Saatçioğlu, 1971).

Müdahale görmemiş Doğu ladini meşcerelerinde, kuvvetli dal bu- danması ve gövde ayrılmaları başlamasının, boniteliere göre 25 - 40 yaşlarında başladığı gözlenmiştir. Önceden bakım müdahalesi gör- müş meşcerelerde bu süre, müdahalenin şiddetine göre daha da uzayacak.

Doğu ladinde idare süresi, boniteliere göre 90 - 120 yıl olarak kabul edilmiştir. Bu ağaç türünde idare süresi yalnız (U/2) yaşına kadar mutedil yüksek aralama, U/2’den sonra mutedil Alçak aralama uygulama- ması önerilmektedir (Saatçioğlu, 1971).

Mutedil Yüksek Aralama; mağlup gövdelerden yalnız 5. sınıf, 3. ve 4. sınıflardan da mantar ve böcekli gövdeler uzaklaştırılır. Galip gövdelerden sıkışmışlar, kırbaçlayıcılar, azmanlar ve hasta gövdeler ve gerekliğinde kusursuz galip gövdeler çıkarılır.

Mutedil Alçak Aralama; 5. ve 4. sınıf gövdelerden başka, 2. sınıf gövdelerden, kırbaçlayıcılar, hasta gövdeler ve azmanlar çıkarılır.

Doğu ladını yayılış alanlarında gerek iklim gerek arazi koşullarının güçlüğine nedeniyle, aralama kesimleri dönüş süresinin 5 yıl olarak alın- masının uygun olacağı düşünülebilir.
KAYNAKÇA

Ömer S. ERKULOĞLU

Doğu Ladininde İslah Çalışmaları

Doğu Ladininde Bir Üslün (Plus) Ağaç Kapıköy - Maçka
Foto: Ö. S. Erkuloğlu
9 DOĞU LADİNİNDE ISLAH ÇALIŞMALARI

"Orman Ağaçları İslahi" orman ağaçlarının kalıtsal özellikleri ve varyasyonlardan faydalanılarak, ekonominin isteklerine uygun kalite ve gelişime potansiyeline sahip ormanlar yetiştirmeyi hedef alan uygulamalı bir bilim dalıdır. Böylece orman ağaçları İslahi, ormanın büyümeye hızını artırmayı, daha yüksek kalitede odun elde etmeyi, biyotik ve abiyotik zararlara daha dayanıklı bireyler ve populasyonlar yetiştirmeyi amaç edinmiştir (Ürgenç, 1982).

Orman ağaçları İslahında üç ana metod söz konusudur.
1. - Seleksiyon İslahi
2. - Melezleme İslahi
3. - Mutasyon İslahi

Seleksiyon, genetik İslahi sağlamak üzere arzu edilen niteliklere göre populasyonların ve bireylerin seçimine denir (Ürgenç, 1982).

Doğu ladininde seleksiyon İslahi metodu ile ağaç İslahi çalışmalarında yapmış ve halen de çalışmalar devam etmektedir. Bu çalışmalar sırasıyla, tohum hasat ve kullanma mıntıkalarının tesbiti (tohum transfer rejiyonlaması), tohum meşçereleri seçimi (kitle seleksiyonu), orjin denemeleri, bireysel seleksiyonla üstün ağacın seçimi tohum bahçe­leri kurulması, aşır ve çelik ile fidan yetiştirme çalışmalarıdır.

Doğu Ladıninde seleksiyon İslahi metodu ile yapılacak İslahi çalışmalarında izlenecek yol şekil 1’dede gösterilmiştir (Yahyaoğlu, Atasoy 1983).

Seleksiyon İslahi iki aşamada gerçekleştirilmiştir. Bunlar;

a) Toplumsal seleksiyon (kitle seleksiyonu)
 b) Bireysel seleksiyon (Ferdi seleksiyon) dur.

Her iki seleksiyon şekli aşağıdaki açıklanmıştır.

9.1 **Toplumsal Seleksiyon (Kitle Seleksiyonu)**

Bu metod, tohum meşçerelerinin seçimi ve uygun olanların orijin denemeleriyle tesbiti, fidanlıkta fidan seleksiyonu, doğal gençleştirme alanlarında tohum (şiper) ağaç olarak üstün özellikleri olanların bırakılması, aralama müdahalelerinde fena fertleri ortadan kaldırmak, iyi fertlerin korunması gibi konulun kapsar (Ürgenç, 1982, Yahyaoğlu ve Atasoy 1983).

ŞEKİL: Doğu Ladini (Picea Orientalis (L.) Link) 'nin Selektif İslahında İzlenecek Yol

MESÇERE
(Populasyon)

Fenotipik Seleksiyon

Toplumsal(kitle)
Seleksiyon

Tohum Mesceresi

Bireysel(ferdi)
Seleksiyon

Üstün Ağac

Vejetatif Yolla Üretim
(Celik ve Aşı)

Fenatipik
Seleksiyon

Generatif Yolla Üretim (Tohum)

Orijin Denemeleri
(Uygun Tohum
Kaynağı Belirlenmesi)

Dörtl Denemeleri
(Genotipik Test)

ELİT AĞAÇ

Tohum Plantasyonu

Celik Üretme Bahçesi

Kional Tohum Bahçesi

UYGULAMAYA DEVI

UYGUN ORIJIN -
DEN TOHUM

UYGULAMAYA DEVIR

UYGUN ORIJIN -
DEN TOHUM

UYGULAMAYA DEVIR
9.1.1 Doğu Ladinl Tohum Transfer Rejonları

Bu rejonlamada, alt rejonların yatay genişlikleri lokal tohum için önerilen \(\geq 50 \) km den çok olmadığını emniyetle kullanılabilir. Ancak her alt rejonunda seçilen tohum meşçeresi, alt rejon genişliğinde ve yüksekliğinde \(\geq 200 \) m. olan bir kuşak içinde kullanılabilir. İçinde tohum meşçeresi bulunmayan alt rejonlara, aynı ana rejyonun komşu alt rejonundan yükseklik ve baki faktörü dikkate alınarak tohum transferi yapılabilir. Zorunlu durumlarda birbirlerinden tohum transferi yapılabilen alt rejonlar Çizelge 1'de gösterilmiştir. Yalnız ana rejonlar arasında tohum transferi kesinlikle yapılmamalıdır.

Öte yandan Şimşek ise ladinde yeşime ortamının en önemli parametresinin toprak rutubeti olduğunu belirtmek, bu yüzden ladin ağaçlandırımları genel kendi doğal yayılış içerisinde kalacağına göre 100 m lik yükseklik dikkate alınarak tohum transferi yapılmasını önermektedir. Bu farklılık ise 5 vejetasyon gününe isabet etmektedir (Şimşek, 1993).
Çizelge 1. Birbirlerinden Tohum Transferi Yapılabilecek Doğu Ladın At Rejiyonları

<table>
<thead>
<tr>
<th>Alt Rejiyonlar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Tek başına</td>
</tr>
<tr>
<td>1.2 ve 1.3</td>
<td>Birbirlerinden</td>
</tr>
<tr>
<td>1.4 ve 1.5</td>
<td>"</td>
</tr>
<tr>
<td>1.6 ve 1.8</td>
<td>"</td>
</tr>
<tr>
<td>1.7</td>
<td>Tek başına</td>
</tr>
<tr>
<td>2.1 ve 2.2</td>
<td>Birbirlerinden</td>
</tr>
<tr>
<td>3.1 ve 3.2</td>
<td>"</td>
</tr>
<tr>
<td>3.3 ve 3.4</td>
<td>"</td>
</tr>
<tr>
<td>4.1 ve 4.2</td>
<td>"</td>
</tr>
<tr>
<td>5.1 ve 5.2</td>
<td></td>
</tr>
</tbody>
</table>

9.1.2 Tohum Meşçereleri

Tohum meşçerelerinin alt ve üst sınırları arasındaki yükseklik farkı en çok 100 m. olabileceği ve doğru ladınin dikey yönde ise ± 200 m yukarı yukarı tanımlabileceği kabul edildiğine göre (Ürgenç, 1962, Yahyaoglu, Atasoy, 1983) tohum meşçerelerinin alt yüksekliğinde 200 m ekleyip üst yüksekliğinden 200 m çıkararak tohumun kullanım alanlarının alt ve üst sınırları bulunabilir (Çizelge 2).

Orman Ağaçları ve Tohumları İslah Enstitüsü tarafından doğru ladınin içinde simdiye kadar seçilmiş bulunan tohum meşçere dizileri çizelge 3 de verilmiştir.
Çizelge 2. Tohum Meşçerelerinin Yüksekliklerine göre Kullanma Alanlarının Dikey Genişlikleri

<table>
<thead>
<tr>
<th>Tohum Meşçerelerinin Yükseklikleri (Alt - Üst)</th>
<th>Kullanma Alanlarının Yükseklikleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>800 - 900</td>
<td>700 - 1000</td>
</tr>
<tr>
<td>900 - 1000</td>
<td>800 - 1100</td>
</tr>
<tr>
<td>1000 - 1100</td>
<td>900 - 1200</td>
</tr>
<tr>
<td>1100 - 1200</td>
<td>1000 - 1300</td>
</tr>
<tr>
<td>1200 - 1300</td>
<td>1100 - 1400</td>
</tr>
<tr>
<td>1300 - 1400</td>
<td>1200 - 1500</td>
</tr>
<tr>
<td>1400 - 1500</td>
<td>1300 - 1600</td>
</tr>
<tr>
<td>1500 - 1600</td>
<td>1400 - 1700</td>
</tr>
<tr>
<td>1600 - 1700</td>
<td>1500 - 1800</td>
</tr>
<tr>
<td>1700 - 1800</td>
<td>1600 - 1900</td>
</tr>
<tr>
<td>1800 - 1900</td>
<td>1700 - 2000</td>
</tr>
<tr>
<td>1900 - 2000</td>
<td>1800 - 2100</td>
</tr>
<tr>
<td>2000 - 2100</td>
<td>1900 - 2200</td>
</tr>
<tr>
<td>2100 - 2200</td>
<td>2000 - 2300</td>
</tr>
</tbody>
</table>

Çizelge 3. Ülkemizde Mevcut Doğu Ladın Tohum Meşçereleri

<table>
<thead>
<tr>
<th>Meşce No</th>
<th>Bölge</th>
<th>İşletme Bölümü</th>
<th>İşletme Şefliği No:</th>
<th>Süresi Ha.</th>
<th>Rakım n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artvin</td>
<td>Artvin Taşpınar</td>
<td>259-260</td>
<td>81.00</td>
<td>53.50</td>
</tr>
<tr>
<td>2</td>
<td>Giresun</td>
<td>Bulancak</td>
<td>Bıkak</td>
<td>86</td>
<td>63.50</td>
</tr>
<tr>
<td>3</td>
<td>Trabzon</td>
<td>Torul</td>
<td>Örümcek</td>
<td>108-189</td>
<td>63.50</td>
</tr>
<tr>
<td>4</td>
<td>Trabzon</td>
<td>Maçka</td>
<td>Maçka</td>
<td>25-33-34-35</td>
<td>122.50</td>
</tr>
<tr>
<td>5</td>
<td>Trabzon</td>
<td>Maçka</td>
<td>Maçka</td>
<td>39-40-48</td>
<td>91.50</td>
</tr>
<tr>
<td>6</td>
<td>Artvin</td>
<td>Şavşat</td>
<td>Veliköy</td>
<td>146-147</td>
<td>135.00</td>
</tr>
<tr>
<td>7</td>
<td>Trabzon</td>
<td>Sü明媚ne</td>
<td>Çaykara</td>
<td>407-408-409</td>
<td>410-432</td>
</tr>
<tr>
<td>8</td>
<td>Giresun</td>
<td>Doreli</td>
<td>Kınıbel</td>
<td>100-101</td>
<td>289.50</td>
</tr>
<tr>
<td>9</td>
<td>Giresun</td>
<td>Doreli</td>
<td>İkiz</td>
<td>84</td>
<td>46.00</td>
</tr>
<tr>
<td>10</td>
<td>Trabzon</td>
<td>Trabzon</td>
<td>Vakfıkebir</td>
<td>264-272-273</td>
<td>108.50</td>
</tr>
<tr>
<td>11</td>
<td>Artvin</td>
<td>Göktaş</td>
<td>Göktaş</td>
<td>17-25</td>
<td>294.00</td>
</tr>
<tr>
<td>12</td>
<td>Artvin</td>
<td>Yusufeli</td>
<td>Öğlem</td>
<td>235-274-275</td>
<td>157.50</td>
</tr>
</tbody>
</table>

TOPLAM: 1383.00 755.00
Tohum transfer rejyonları ve alt rejyonları itibariyle mevcut doğu ladıni tohum meşçelerleri, denizden yükseklikleri de dikkate alınarak bir çizelgeye tasADIĞI takdirde, birbiriinden tohum transferi yapılabilecek alt rejyonların, hangisinde hiç tohum meşçeresi olmadığı, hangi­sinde ise dikey yönde kapatılmayan sahalar bulunduğunu rahatlıkla gö­rüşecektir (Çizelge 4).

Çizelge 4‘ün incelenmesinden de görüleceği üzere halen mevcut doğu ladıni tohum meşçelerleri hiç bir rejyorda sahalar tam olarak kapalıamamaktadır. Kırmızı renkler tohum meşçelerinin kapatabildi­ği sahalar, siyah renkler ise kapatılmayan sahaları göstermektedir.

9.1.3 Doğu Ladıniinde Yapılan Orijin Denemeleri

Doğal populasyonlar ve plantasyon meşçeleri generalif ve ve­jetatif üretme kaynağı olarak kullanıldığında bu nihaye menşeKaynak (provenance), sadexe doğal populasyonlara ise orijin = köken denilmektedir. (Gosling 1986, Lines 1987).

Coğrafi anlamda orijin, belirli bir yöre, biyolojik anlamda ise belirli bir yörenin üzerinde yetisen populasyondur. Uygun orijin, coğ­rafik olarak ağaçlama amaçları içi tohum toplanacak yöreler, biyolo­jik olarak da tohum toplanacak uygun populasyonlardır (Işık, 1979).

ÇİZELGE: 4. Tohum Transfer Rejiyonları İtibariyle Doğu Ladını Tohum Mescereleri

<table>
<thead>
<tr>
<th>ALT REJİYONLAR</th>
<th>DOĞU KARADENİZ</th>
<th>SAVSAT ARDANUC</th>
<th>CORUH</th>
<th>ORTA HARSIT</th>
<th>POFOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tohum Mes. No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENİZDEN YÜKSEKLİK (m)</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tohum Mes Alani (Ha)</td>
<td>43</td>
<td>47</td>
<td>33</td>
<td>69</td>
<td>37</td>
<td>35</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>-</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>Alt Rejyon Alani (Ha)</td>
<td>292</td>
<td>145</td>
<td>93</td>
<td>53</td>
<td>70</td>
<td>49</td>
<td>50</td>
<td>752</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tohum mescerelerinin kapattığı Alanlar

Tohum mescerelerinin kapatamadığı alanlar

Doğu ladinde orijin denemelerine başlanmıştır. Ancak bu denemelerin sonuçları çok uzun bir zamanda alınacak, o zamanda kadar en güvenli yolun tohum transfer rejyonlarına bağlı kalınarak tohum tohum kullanmak olduğu söylenebilir. Açıklandığı bu hususlar dikkate alınarak tohum meşçerelerinin kapamadığı sahalarında, tohum tohum kullanma alanlarının dikey olarak 200 m, yatay olarak 50 km olarak alınması önerilmiştir (Yahyaoğlu, Atasoy 1983). Orijin denemeleri tohum hasat ve transfer mıntıkalarının ortaya konmasına en önemlidir ve en emin dayanaktır. Dolayısıyla, doğu ladini orijin denemesi sonuçları alınınca, ekolojik faktörlerle göre tesbit edilen tohum transfer rejyonları daha güvenilir hale getirilecektir.

9.1.4 Silvikültürel Çalışmalarda Toplumsal Seleksiyon

bireşirelen bireyle ön planda yer vermek gerekir. Doğal gençleştirme metodlarını seçerken de hangi metodların islah bakımından daha fazla katkıları olabileceğini düşünmek zorunludur (Ürgenç, 1982).

9.2 Bireysel Seleksiyon (Ferdi Seleksiyon)

Bir tek ağaçın açık tozlaşmasından (belli bir ağaçın dişi çiçeğinin diğer belirsiz ağaçların polenleri ile tozlaşması sonucu oluşan tohumlar) veya bir ağaç çiğinin kontrolü tozlaşmasından (polenin tozlaşmayı sağlamak üzere dişi çiçeğe yapay olarak intikalini sağlayarak, ana ve baba her iki ebeveynin de belli olan bir tozlaşma mahsûlu tohumlar) generatif yolla oluşan bireyler döl kavramı içinde ele alınır.

Bir tek ağaçtan alınan çelik veya aşı kalemi v.b. üretim materyali ile vejetatif olarak üretilen bireyler ise klon kavramı içinde yer alır.

Generatif yolla üretilen bireyler arasında en iyileri döl denemeleleri ile vejetatif yolla üretilen bireyler arasında en iyileri ise klonal testlerle seçilir (Ürgenç, 1983).

Yalnız daha önceleri doğu ladında bireysel ıslah çalışmalarının gereğini vurgulamak ve tohum bahçelerinin kurulabilirlüğünü belirtemek için D.K. Ormançılık Araştırma Müdürlüğünce 1975 yılında bazı çalışmalar başlanmıştır.

9.2.1 Klonal Seleksiyon (Üstün ağaç seçimi)

Dış görünüşleri, yanı fenotipleri itibariyle muayyen bazı vasiları bakımından emsalere kıyaslarda bariz bir üstünlük gösteren ağacılara "üstün ağaç (= plus tree)" ismi verilmektedir (Beşkök, 1976).

Seçilecek üstün ağaçın yaşı idare süresinin % 20 - 50 si kadar, bo- yu komşularından % 10, hacmi ise % 25 fazla olmalıdır (Yahyaöğlu, Atasoy 1983).

Üstün ağacılara seçiminde yukarıdaki kriterler yanında tepe, göv- de ve kök sistemine ait bazı karakterlerde gözönünde bulundurulmakla- tadır.
Bu karakterler şunlardır:

Tepe: simetrik, tepe sürgünü belirgin ve hakim durumda, dallar mümkün olduğu ölçüde ince çaplı, tepe tacı dar yapılı ve konik, sağlıklı olmalıdır.

Gövde: düz, doğru, dolgun ve yuvarlak yapıda; tabii budanması iyi, çatalsız, sağlıklı ve her türlü böcek ve mantar hastalıkları ile don çatlağından arı olmalıdır.

Kök: her istikamette simetrik dağılmış, kesif olmalı, kök boğazı ve çevresinde payandalama, şişkinlik ve kivrilik olmamalıdır (Erkuloğlu, 1986).

Üstün ağaçların seçim işlemi tamamlandıktan sonra, bu ağaçlardan alınacak vejetatif üretim materyali ile aşılı fidan ve çelik fidanı yetiştirilecek ve bunlarla klonal tohum bahçeleri ile çelik üretme bahçeleri kurulacaktır (Şekil 1).

9.2.2 Vejetatif Üretme

9.2.2.1 Aşı ile Üretme (Heterovejetatif Üretme)

Aşı ile üretme yani aşılama, iki bitki parçasının kaynaştırılması tek bir bitki olarak gelişirilmesi tekniğidir (Ürgenç, 1982).

Aşında altlık ile kalemin kaynaşması başarısının simgesidir. Bunun kolaylaştırılmak üzere aşı çalışmalarıda kalemin uyumlamış yanı latent halde olması, buna karşılık altlıkların faaliyete girmek üzere ve natalta birçok durumda 3 - 5 cm kadar sürün geliştirmesi büyük önem taşır (Ürgenç, 1982).

Doğu ladındade yarma aşı ile başarı elde edilmiştir. Bir önceki bölümdede belirtildiği üzere 1976 ve 1977 yıllarında Meryemana'da araştırma fidanlığında 4 - 0 yaşındaki anlaklara 17 adet üstün ağaçtan alınan kalemlerle yarma aşı uygulanmış ve % 45,8 oranında başarı sağlanmıştır. Bu aşı fidanlarla Meryemana Araştırma Ormanında bir "üstün ağaç tohum bahçesi" kurulmuştur (Ürgenç, 1982).

Doğu ladıni tohum meşçelerlerinden üstün ağaç seçme işlemi tamamlandıktan sonra, seçilen üstün ağaçlardan alınacak aşı kalemleri ile üstün ağaç tohum bahçesi kurma çalışmalarına başlanmalıdır.

9.2.2.2 Çelikle Üretme (Autovegetatif Üretme)

Doğu ladıni, çelikle de üretilebilirktedir. Heterovegetatif ürete olan aşı ile üretemeye kyasla autovegetatif ürete olan çelikle ürete göreceğ genotipi aynı muhafaza ettigi cihette ilsha daha geniş olanaklar sağlamaktadır (Ürgenç 1982, Yahyaoğlu 1980, Erkuloğlu, Eron 1985 (a)).

Trabzon ve Ordu'da mevcut Agrocer 640 tipi 3 adet serada, uygulama 1983 yılından beri doğu ladininde çelik ve fidan üretmektedir. Sağlanan başarı % 50 - % 70 arasında değişmek ve her geçen yıl başarısı %si artmaktadır. Bu çalışmalarla bir tarzdan super metodu ile elde edilen doğal gençlikler ve fidanlardaki süper fidanlar çelik kaynağı olarak kullanılırken, 1987 yılından bu yana seçilimle oluşan üstün ağaclardan çelik kaynağı olarak kullanılmaya başlanmıştır. Üstün ağaclardan alınan çeliklerin köklendirilmesiyle elde edilen fidanlar "çelik üretim bahçesi" (materyal temin sarı) ve "klonal tohum bahçesi" konulmasında kullanılmaktadır. Ayrıca doğal gençlik ve süper fidanlardan alınan çeliklerden yetiştirilen fidanlar ise ağaclandırma ihtiyaçları için kullanabilir (Yahyaoğlu 1985, Erkuloğlu ve Eron 1985 (b)).

9.2.3 Tohum Bahçesi

Doğu ladininde, 9.2 bölümünde kısaca belirilen 17 klonluk araştırma amaçlı klonal tohum bahçesinden başka tohum bahçesi hala 150
mevcut değildir. Yalnız mevcut tohum tohumlarının alındığı tohum ve vejetatif üretme materyalleri ile üstün ağaç tohum bahçeleri, klonal tohum bahçeleri ve çelik üretme bahçeleri kurulmalıdır. Bunlardan elde edilecek tohum ve çelikler dilimlerde kullanılmaya devam edilirken, bir yandan da genetik test çalışmaları sürdürülerek üstün Doğu ladini ağaçları arasında eli olanların teşbit edilmelidir (Şekil 1) (Yahyaoğlu ve Atasoy, 1983).

9.2.4 Döl Denemeleri

KAYNAKÇA

YAHYAOĞLU, Z. 1980. Doğu Ladini (Picea orientalis (L.) Link) nin vejetatif yolla (çelikle) üretilmesi olanakları üzerine araştırma tezi, henüz yayınlanmamıştır.) 136 S.

Doç. Dr. Osman SUN

10 doğu ladininde hasilat

Biri 25, Diğer 15 Yaşında İki Doğu Ladın Kesili
Foto: Ö. S. Erkuloğlu
10 DOĞU LADİNİNDE HASILAT

10.1 Doğu Ladini Hasılatı

Ladin Hasılat Tabloları, doğal yoldan oluşmuş, müdahalede görmemiş, saflı ve eşit yaşlı, normal Doğu ladini meşcerelerinin asılı ve ara meşcere hacim ve hacim elemanları ile, genel verim ve artırılmasını vermektedir. Bu nedenle, tablo değerleri, sadece eşit yaşlı ve gençleştirilmiş 20 yıl olan doğal meşcereler için kullanılmalıdır.

Yarı gölgeli ağacı olarak bilinen Doğu Ladini kurduğu meşcerelerdeki ağac sayısının, ışık ağacı meşcereleerge göre daha yavaş bir azalma göstermesi, bu türün bireylerinin ışık ağılına uzun süre dayanabilmesi nedeniyle hayat mücadelesinin uzun yıllar devam ettiğini göstermektedir. Hayat mücadelesi, iyi yetişme muhillerinde erken başlayıp erken bitmekte, buna karşılık kötü yetişme muhillerinde çok uzun yıllar devam etmektedir.

Gerek meşcere üst boyu, gerekse meşcere orta boyu, başlangıçta küçük miktarlar halinde başlamakla ve yaşın ilerlemesi ile, genel kurallara uygun olarak, önceleri, yavaş, sonra hızlı bir şekilde artmaya, belirli bir hastalık sonra artış hızı yavaşlamaktadır. Yurdumuzdaki ibreli ağacı türlerinin kurduğu meşcerelegerin boy gelişimleri ile karşılıştırdığında, Doğu Ladini meşcerelegerin üst ve orta boyu, ışık ağacı olarak bilinen bütün bu türlerde göre başlangıçta küçük değerlerde sahiptir. Ancak yaşın ilerlemesi ile birlikte bütün bu türlerin boy gelişmelerini aşmaktadır.

Ağac saylarının çap kademeine değil tek ilkelarda bütün boñitel sınıflarında normal dağılıştan uzaktır. İnce çaplı ağaclar meşcere ağac sayısının yansımasından fazlasını oluşturmaktadırlar. Bu durum 50’ci yaşa kadar devam etmektedir. Bu yaşta, 1. boñitel sınıfında ağac sayiları...
nin çap kademelerine dağılışlarının normal dağılışa yaklaştığı görülmektedir. 100'üncü yaşta, dağılışın bütün bonitet sınıflarında normale döndüğü, 200'üncü yaşta ise ağaç sayılarının dağıldığı çap kademelerinin genişlediği ve orta çapın yaklaşık olarak ortalarda kaldıgı görülmektedir.

Doğu Ladini meşcere göğüs yüzeyi bütün bonitet sınıflarında yaşın ilerlemesi ile önçileri hızla artmakta, 100. yaştan sonra maksimuma ulaşmakta, bir süre maksimumunda kalarak yavaş bir şekilde azalmaktadır. Bu durum aşağıda belirlenmiştir:

<table>
<thead>
<tr>
<th>Yaş</th>
<th>Göğüs Yüzeyi (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>120</td>
<td>58</td>
</tr>
<tr>
<td>130</td>
<td>58</td>
</tr>
<tr>
<td>200</td>
<td>53</td>
</tr>
</tbody>
</table>

Türkiye’de yetişen ibreli ağaç türlerinin meşcere göğüs yüzeyleri ile karşılaştırıldığında, Doğu Ladini meşcere göğüs yüzeylerinin ilk yaşarda bu türlerden Sarıçarn ve Karaçarn meşcere göğüs yüzeyine göre daha küçük olduğu, ancak kısa bir süre sonra, Sarıçarn için verilen göğüs yüzeyi değerlerini aştığı ve bütün gelişmesi boyunca Karaçarn tablo değerlerinin altında, Sarıçarn tablo değerlerinin üstünde, kati her ikisine çok yakın değerle sahip olarak paralel bir seyir gösterdiği, çok ileri yaşlarda ise hemen hemen aynı değerle sahip olduğu görülmektedir.

Doğu Ladini meşcerelevinde ara meşcereye ait ağaçların ayrılmamasından sonra, sahada kalan ağaçların meydana getirdiği asli meşcere hacminin, bonitet sınıfları içinde, yaşa göre olan gelişmesi genç yaşlarda hızlıdır. Doğu Ladini asli meşcere hacimleri, ilk yaşlardan İlif
baren Türkiye'de yetişen bütün ibreli türlerin asli meşcere hacmelerini aşmaktadır. Hacim gelişmesi yönünden Doğu Ladinin en yakın türler Karaçam ve nispeten de Sarıçanlardır. Diğer türlerin hacim gelişmesi Doğu Ladinin değerlerinin çok altında kalmaktadır.

Doğu Ladininde genel ortalama hacim artışları boniteller için ortalamalar olarak 70 - 75 yaş arasında azamiya ulaşmaktadır. Azamiye ulaştıkları yaşlar, ortalama hacim artışlarının cari ortalamaları ile kesiştikleri yaşlardır.

10.1.1 Ağaç Hacim Tablosu

Ladinin kabuklu gövde hacimleri, göğüs çapı ve ağaç boyuna bağlı olarak kurulan, katsayılari en küçük kareler yöntemi ile keşirilen oalılıği eşitlikten üretilmiştir. Söz konusu eşitlikten, göğüs çapı 1 cm ve ağaç boyu 1 m kademelerle üretilen kabuklu gövde hacimler, Çizelge 1'de verilmiştir.

ÇİZELGE 1 : Doğu Ladini Gövde Hacmi Tablosu

<table>
<thead>
<tr>
<th>Ağaç Boyu</th>
<th>Göğüs Çapları (cm)</th>
<th>Kabuklu Gövde Hacmi (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0,007 0,011 0,015 0,021 0,027 0,034 0,042</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,007 0,011 0,015 0,022 0,029 0,036 0,045</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,008 0,012 0,017 0,023 0,030 0,038 0,047</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,008 0,012 0,018 0,024 0,032 0,040 0,050</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,009 0,013 0,019 0,026 0,033 0,042 0,052</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,009 0,013 0,019 0,026 0,033 0,042 0,052</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,014 0,021 0,028 0,035 0,046 0,057</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,015 0,021 0,029 0,038 0,049 0,061</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,022 0,030 0,040 0,050 0,062</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,022 0,031 0,041 0,052 0,064</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,034 0,043 0,054 0,067</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,055 0,061</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,058 0,072</td>
<td></td>
</tr>
<tr>
<td>Ağıç Boyu</td>
<td>Göğüs Çapları (cm)</td>
<td>Kabuklu Gövde Hacımı (m³)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>11</td>
<td>0,054</td>
<td>0,055</td>
</tr>
<tr>
<td>12</td>
<td>0,067</td>
<td>0,068</td>
</tr>
<tr>
<td>13</td>
<td>0,080</td>
<td>0,084</td>
</tr>
<tr>
<td>14</td>
<td>0,093</td>
<td>0,107</td>
</tr>
<tr>
<td>15</td>
<td>0,106</td>
<td>0,123</td>
</tr>
<tr>
<td>16</td>
<td>0,119</td>
<td>0,140</td>
</tr>
<tr>
<td>17</td>
<td>0,133</td>
<td>0,158</td>
</tr>
<tr>
<td>18</td>
<td>0,146</td>
<td>0,186</td>
</tr>
<tr>
<td>19</td>
<td>0,160</td>
<td>0,213</td>
</tr>
<tr>
<td>20</td>
<td>0,173</td>
<td>0,265</td>
</tr>
<tr>
<td>21</td>
<td>0,186</td>
<td>0,327</td>
</tr>
<tr>
<td>22</td>
<td>0,200</td>
<td>0,393</td>
</tr>
<tr>
<td>23</td>
<td>0,214</td>
<td>0,472</td>
</tr>
<tr>
<td>24</td>
<td>0,229</td>
<td>0,563</td>
</tr>
<tr>
<td>25</td>
<td>0,244</td>
<td>0,665</td>
</tr>
<tr>
<td>26</td>
<td>0,261</td>
<td>0,776</td>
</tr>
<tr>
<td>27</td>
<td>0,277</td>
<td>0,897</td>
</tr>
</tbody>
</table>
Doğu Ladım Gövde Hacmi Tablosu

<table>
<thead>
<tr>
<th>Göğüs Çapları (cm)</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ağaç Kabuklu Gövde Hacmi (m³)</td>
<td>10</td>
<td>0.252</td>
<td>0.276</td>
<td>0.302</td>
<td>0.328</td>
<td>0.356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.273</td>
<td>0.298</td>
<td>0.324</td>
<td>0.350</td>
<td>0.377</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.304</td>
<td>0.331</td>
<td>0.358</td>
<td>0.386</td>
<td>0.415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.335</td>
<td>0.365</td>
<td>0.396</td>
<td>0.428</td>
<td>0.462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.366</td>
<td>0.400</td>
<td>0.435</td>
<td>0.473</td>
<td>0.514</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.398</td>
<td>0.435</td>
<td>0.478</td>
<td>0.522</td>
<td>0.570</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.430</td>
<td>0.471</td>
<td>0.516</td>
<td>0.565</td>
<td>0.620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>0.463</td>
<td>0.506</td>
<td>0.556</td>
<td>0.611</td>
<td>0.672</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.497</td>
<td>0.542</td>
<td>0.597</td>
<td>0.658</td>
<td>0.723</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0.533</td>
<td>0.581</td>
<td>0.642</td>
<td>0.710</td>
<td>0.783</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.570</td>
<td>0.622</td>
<td>0.690</td>
<td>0.765</td>
<td>0.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0.610</td>
<td>0.670</td>
<td>0.745</td>
<td>0.827</td>
<td>0.917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.653</td>
<td>0.726</td>
<td>0.810</td>
<td>0.899</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0.700</td>
<td>0.783</td>
<td>0.880</td>
<td>0.983</td>
<td>1.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.751</td>
<td>0.843</td>
<td>0.951</td>
<td>1.065</td>
<td>1.189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.805</td>
<td>0.909</td>
<td>1.028</td>
<td>1.155</td>
<td>1.291</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>0.861</td>
<td>0.973</td>
<td>1.096</td>
<td>1.228</td>
<td>1.375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>0.919</td>
<td>1.042</td>
<td>1.171</td>
<td>1.310</td>
<td>1.462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>0.979</td>
<td>1.114</td>
<td>1.253</td>
<td>1.401</td>
<td>1.562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.040</td>
<td>1.180</td>
<td>1.331</td>
<td>1.492</td>
<td>1.666</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.103</td>
<td>1.255</td>
<td>1.418</td>
<td>1.591</td>
<td>1.779</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

162
<table>
<thead>
<tr>
<th>Açıklama</th>
<th>Göğüs Çapları (cm)</th>
<th>Kabuklu Gökde Hacmi (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Boyu (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.595</td>
<td>0.634</td>
</tr>
<tr>
<td>13</td>
<td>0.619</td>
<td>0.659</td>
</tr>
<tr>
<td>14</td>
<td>0.642</td>
<td>0.684</td>
</tr>
<tr>
<td>15</td>
<td>0.666</td>
<td>0.710</td>
</tr>
<tr>
<td>16</td>
<td>0.690</td>
<td>0.735</td>
</tr>
<tr>
<td>17</td>
<td>0.713</td>
<td>0.769</td>
</tr>
<tr>
<td>18</td>
<td>0.737</td>
<td>0.785</td>
</tr>
<tr>
<td>19</td>
<td>0.760</td>
<td>0.810</td>
</tr>
<tr>
<td>20</td>
<td>0.784</td>
<td>0.835</td>
</tr>
<tr>
<td>21</td>
<td>0.807</td>
<td>0.860</td>
</tr>
<tr>
<td>22</td>
<td>0.831</td>
<td>0.886</td>
</tr>
<tr>
<td>23</td>
<td>0.855</td>
<td>0.911</td>
</tr>
<tr>
<td>24</td>
<td>0.878</td>
<td>0.938</td>
</tr>
<tr>
<td>25</td>
<td>0.902</td>
<td>0.961</td>
</tr>
<tr>
<td>26</td>
<td>0.925</td>
<td>0.986</td>
</tr>
<tr>
<td>27</td>
<td>0.949</td>
<td>1.011</td>
</tr>
<tr>
<td>28</td>
<td>0.972</td>
<td>1.036</td>
</tr>
<tr>
<td>29</td>
<td>0.996</td>
<td>1.061</td>
</tr>
<tr>
<td>30</td>
<td>1.020</td>
<td>1.086</td>
</tr>
<tr>
<td>31</td>
<td>1.043</td>
<td>1.111</td>
</tr>
<tr>
<td>32</td>
<td>1.067</td>
<td>1.137</td>
</tr>
<tr>
<td>33</td>
<td>1.092</td>
<td>1.162</td>
</tr>
<tr>
<td>34</td>
<td>1.116</td>
<td>1.189</td>
</tr>
<tr>
<td>35</td>
<td>1.140</td>
<td>1.215</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 1: Göğüs Çapları(cm.)

<table>
<thead>
<tr>
<th>Ağır Düzey</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabuklu Gövde Hacmi (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1,299</td>
<td>1,301</td>
<td>1,417</td>
<td>1,484</td>
<td>1,532</td>
<td>1,602</td>
<td>1,674</td>
<td>1,749</td>
<td>1,822</td>
<td>1,903</td>
</tr>
<tr>
<td>19</td>
<td>1,330</td>
<td>1,396</td>
<td>1,463</td>
<td>1,532</td>
<td>1,602</td>
<td>1,674</td>
<td>1,749</td>
<td>1,822</td>
<td>1,903</td>
<td>1,985</td>
</tr>
<tr>
<td>20</td>
<td>1,371</td>
<td>1,439</td>
<td>1,508</td>
<td>1,579</td>
<td>1,652</td>
<td>1,726</td>
<td>1,802</td>
<td>1,879</td>
<td>1,958</td>
<td>2,039</td>
</tr>
<tr>
<td>21</td>
<td>1,412</td>
<td>1,482</td>
<td>1,554</td>
<td>1,627</td>
<td>1,701</td>
<td>1,778</td>
<td>1,856</td>
<td>1,936</td>
<td>2,017</td>
<td>2,100</td>
</tr>
<tr>
<td>22</td>
<td>1,454</td>
<td>1,525</td>
<td>1,599</td>
<td>1,674</td>
<td>1,751</td>
<td>1,830</td>
<td>1,910</td>
<td>1,992</td>
<td>2,076</td>
<td>2,172</td>
</tr>
<tr>
<td>23</td>
<td>1,495</td>
<td>1,569</td>
<td>1,644</td>
<td>1,722</td>
<td>1,801</td>
<td>1,884</td>
<td>1,964</td>
<td>2,049</td>
<td>2,135</td>
<td>2,223</td>
</tr>
<tr>
<td>24</td>
<td>1,536</td>
<td>1,612</td>
<td>1,690</td>
<td>1,769</td>
<td>1,850</td>
<td>1,934</td>
<td>2,018</td>
<td>2,105</td>
<td>2,194</td>
<td>2,284</td>
</tr>
<tr>
<td>25</td>
<td>1,577</td>
<td>1,655</td>
<td>1,735</td>
<td>1,816</td>
<td>1,900</td>
<td>1,985</td>
<td>2,073</td>
<td>2,162</td>
<td>2,253</td>
<td>2,346</td>
</tr>
<tr>
<td>26</td>
<td>1,617</td>
<td>1,699</td>
<td>1,780</td>
<td>1,864</td>
<td>1,950</td>
<td>2,037</td>
<td>2,127</td>
<td>2,218</td>
<td>2,312</td>
<td>2,407</td>
</tr>
<tr>
<td>27</td>
<td>1,650</td>
<td>1,742</td>
<td>1,826</td>
<td>1,912</td>
<td>1,999</td>
<td>2,089</td>
<td>2,181</td>
<td>2,275</td>
<td>2,371</td>
<td>2,468</td>
</tr>
<tr>
<td>28</td>
<td>1,681</td>
<td>1,785</td>
<td>1,871</td>
<td>1,959</td>
<td>2,049</td>
<td>2,141</td>
<td>2,235</td>
<td>2,331</td>
<td>2,430</td>
<td>2,531</td>
</tr>
<tr>
<td>29</td>
<td>1,742</td>
<td>1,826</td>
<td>1,916</td>
<td>2,006</td>
<td>2,096</td>
<td>2,193</td>
<td>2,290</td>
<td>2,388</td>
<td>2,488</td>
<td>2,581</td>
</tr>
<tr>
<td>30</td>
<td>1,784</td>
<td>1,872</td>
<td>1,962</td>
<td>2,054</td>
<td>2,148</td>
<td>2,245</td>
<td>2,344</td>
<td>2,444</td>
<td>2,547</td>
<td>2,652</td>
</tr>
<tr>
<td>31</td>
<td>1,805</td>
<td>1,915</td>
<td>2,007</td>
<td>2,102</td>
<td>2,196</td>
<td>2,297</td>
<td>2,398</td>
<td>2,501</td>
<td>2,606</td>
<td>2,714</td>
</tr>
<tr>
<td>32</td>
<td>1,856</td>
<td>1,958</td>
<td>2,052</td>
<td>2,149</td>
<td>2,248</td>
<td>2,348</td>
<td>2,452</td>
<td>2,556</td>
<td>2,665</td>
<td>2,775</td>
</tr>
<tr>
<td>33</td>
<td>1,907</td>
<td>2,001</td>
<td>2,098</td>
<td>2,196</td>
<td>2,297</td>
<td>2,401</td>
<td>2,506</td>
<td>2,614</td>
<td>2,724</td>
<td>2,836</td>
</tr>
<tr>
<td>34</td>
<td>1,948</td>
<td>2,045</td>
<td>2,142</td>
<td>2,244</td>
<td>2,347</td>
<td>2,453</td>
<td>2,568</td>
<td>2,670</td>
<td>2,783</td>
<td>2,898</td>
</tr>
<tr>
<td>35</td>
<td>1,989</td>
<td>2,088</td>
<td>2,188</td>
<td>2,291</td>
<td>2,397</td>
<td>2,504</td>
<td>2,615</td>
<td>2,727</td>
<td>2,842</td>
<td>2,959</td>
</tr>
<tr>
<td>36</td>
<td>2,031</td>
<td>2,131</td>
<td>2,234</td>
<td>2,339</td>
<td>2,446</td>
<td>2,556</td>
<td>2,666</td>
<td>2,784</td>
<td>2,891</td>
<td>3,009</td>
</tr>
<tr>
<td>37</td>
<td>2,072</td>
<td>2,174</td>
<td>2,279</td>
<td>2,386</td>
<td>2,496</td>
<td>2,608</td>
<td>2,723</td>
<td>2,840</td>
<td>2,959</td>
<td>3,082</td>
</tr>
<tr>
<td>38</td>
<td>2,218</td>
<td>2,324</td>
<td>2,432</td>
<td>2,545</td>
<td>2,660</td>
<td>2,777</td>
<td>2,897</td>
<td>3,016</td>
<td>3,143</td>
<td>3,274</td>
</tr>
<tr>
<td>39</td>
<td>1,712</td>
<td>1,831</td>
<td>1,953</td>
<td>2,077</td>
<td>2,197</td>
<td>2,322</td>
<td>2,450</td>
<td>2,581</td>
<td>2,714</td>
<td>2,849</td>
</tr>
<tr>
<td>Göğüs Çapları (cm)</td>
<td>Kabuklu Gövde Hacmi (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2,155 2,272 2,350 2,459 2,542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2,249 2,338 2,429 2,522 2,614 2,712 2,809</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2,313 2,404 2,493 2,593 2,693 2,791 2,890 2,991 3,095 3,201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2,377 2,471 2,567 2,665 2,764 2,866 2,969 3,074 3,181 3,290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2,443 2,533 2,630 2,736 2,838 2,942 3,048 3,156 3,266 3,378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2,504 2,603 2,705 2,809 2,913 3,017 3,126 3,239 3,352 3,466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2,568 2,670 2,774 2,879 2,987 3,095 3,206 3,322 3,437 3,551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2,632 2,736 2,842 2,951 3,061 3,173 3,286 3,404 3,522 3,643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2,699 2,802 2,911 3,021 3,135 3,250 3,367 3,486 3,608 3,731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2,760 2,869 2,980 3,094 3,209 3,327 3,447 3,569 3,693 3,819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2,823 2,936 3,050 3,165 3,284 3,404 3,527 3,652 3,779 3,909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3,051 3,268 3,402 3,543 3,693 3,853 4,016 4,182 4,354 4,531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3,015 3,134 3,256 3,380 3,506 3,638 3,776 3,918 4,061 4,217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3,226 3,353 3,482 3,618 3,758 3,906 4,055 4,208 4,364 4,527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3,310 3,439 3,571 3,713 3,856 4,005 4,157 4,314 4,475 4,640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3,338 3,466 3,600 3,736 3,877 4,020 4,164 4,312 4,462 4,614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3,368 3,502 3,641 3,783 3,927 4,076 4,224 4,371 4,526 4,682</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3,733 3,881 4,035 4,193 4,355 4,517 4,680 4,843 5,003 5,170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4,250 4,403 4,559 4,720 4,891 5,063 5,236 5,410 5,586 5,773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4,600 4,761 4,930 5,103 5,280 5,457 5,636 5,817 6,000 6,190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5,000 5,182 5,367 5,553 5,742 5,936 6,135 6,338 6,544 6,757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ağaç Göğüs Çapları (cm)</td>
<td>Kabuklu Gövde Hacmi (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 62 63 64 65 66 67 68 69 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.319</td>
<td>3.418</td>
<td>3.529</td>
<td>3.642</td>
<td>3.757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.222</td>
<td>4.361</td>
<td>4.503</td>
<td>4.647</td>
<td>4.793</td>
<td>4.942</td>
<td>5.094</td>
<td>5.246</td>
<td>5.402</td>
<td>5.561</td>
</tr>
<tr>
<td>34</td>
<td>4.313</td>
<td>4.456</td>
<td>4.600</td>
<td>4.748</td>
<td>4.897</td>
<td>5.049</td>
<td>5.203</td>
<td>5.359</td>
<td>5.518</td>
<td>5.680</td>
</tr>
<tr>
<td>35</td>
<td>4.404</td>
<td>4.550</td>
<td>4.699</td>
<td>4.848</td>
<td>5.000</td>
<td>5.156</td>
<td>5.313</td>
<td>5.473</td>
<td>5.635</td>
<td>5.800</td>
</tr>
<tr>
<td>36</td>
<td>4.496</td>
<td>4.644</td>
<td>4.795</td>
<td>4.948</td>
<td>5.104</td>
<td>5.263</td>
<td>5.423</td>
<td>5.585</td>
<td>5.752</td>
<td>5.920</td>
</tr>
<tr>
<td>38</td>
<td>4.678</td>
<td>4.833</td>
<td>4.990</td>
<td>5.150</td>
<td>5.312</td>
<td>5.475</td>
<td>5.644</td>
<td>5.813</td>
<td>5.986</td>
<td>6.160</td>
</tr>
<tr>
<td>39</td>
<td>4.769</td>
<td>4.927</td>
<td>5.087</td>
<td>5.250</td>
<td>5.415</td>
<td>5.583</td>
<td>5.754</td>
<td>5.927</td>
<td>6.102</td>
<td>6.280</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doğu Ladın Gövde Hacmi Tablosu
<table>
<thead>
<tr>
<th>Boy</th>
<th>Kabuklu Gövde Hacmi (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>4.854 4.991 5.131 5.272 5.416</td>
</tr>
<tr>
<td>72</td>
<td>5.101 5.246 5.392 5.541 5.692</td>
</tr>
<tr>
<td>73</td>
<td>5.225 5.373 5.523 5.675 5.830</td>
</tr>
<tr>
<td>74</td>
<td>5.348 5.500 5.654 5.815 5.968</td>
</tr>
<tr>
<td>75</td>
<td>5.472 5.627 5.784 5.944 6.106</td>
</tr>
<tr>
<td>76</td>
<td>5.596 5.754 5.915 6.078 6.241</td>
</tr>
<tr>
<td>77</td>
<td>5.719 5.882 6.046 6.213 6.382</td>
</tr>
<tr>
<td>78</td>
<td>5.843 6.009 6.171 6.347 6.520</td>
</tr>
<tr>
<td>85</td>
<td>6.708 6.904 7.102 7.300 7.498</td>
</tr>
<tr>
<td>86</td>
<td>6.832 7.036 7.232 7.429 7.630</td>
</tr>
<tr>
<td>87</td>
<td>6.956 7.163 7.355 7.556 7.762</td>
</tr>
<tr>
<td>88</td>
<td>7.079 7.296 7.494 7.698 7.902</td>
</tr>
<tr>
<td>89</td>
<td>7.203 7.423 7.621 7.825 8.037</td>
</tr>
<tr>
<td>90</td>
<td>7.327 7.557 7.757 7.963 8.177</td>
</tr>
</tbody>
</table>

Doğu Ladını Gövde Hacmi Tablosu

Göğüs Çapları (cm)

<table>
<thead>
<tr>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>Ağaç</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Göğüs Çapları (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kabuklu Gövde Hacmi (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6,800</td>
<td>6,869</td>
<td>7,140</td>
<td>7,315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7,134</td>
<td>7,300</td>
<td>7,465</td>
<td>7,665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7,122</td>
<td>7,139</td>
<td>7,479</td>
<td>7,539</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7,203</td>
<td>7,464</td>
<td>7,830</td>
<td>8,020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7,444</td>
<td>7,629</td>
<td>7,916</td>
<td>8,105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7,605</td>
<td>7,794</td>
<td>7,985</td>
<td>8,178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7,766</td>
<td>7,958</td>
<td>8,154</td>
<td>8,362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>7,926</td>
<td>8,123</td>
<td>8,323</td>
<td>8,525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8,086</td>
<td>8,298</td>
<td>8,502</td>
<td>8,708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8,249</td>
<td>8,453</td>
<td>8,662</td>
<td>8,873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8,409</td>
<td>8,618</td>
<td>8,833</td>
<td>9,044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8,570</td>
<td>8,783</td>
<td>9,000</td>
<td>9,217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>8,731</td>
<td>8,948</td>
<td>9,168</td>
<td>9,396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8,892</td>
<td>9,113</td>
<td>9,337</td>
<td>9,563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9,053</td>
<td>9,278</td>
<td>9,506</td>
<td>9,738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9,214</td>
<td>9,443</td>
<td>9,675</td>
<td>9,909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>9,375</td>
<td>9,608</td>
<td>9,844</td>
<td>10,082</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>9,536</td>
<td>9,773</td>
<td>10,013</td>
<td>10,255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>9,697</td>
<td>9,938</td>
<td>10,182</td>
<td>10,429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>9,858</td>
<td>10,103</td>
<td>10,351</td>
<td>10,598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>11,030</td>
<td>11,284</td>
<td>11,533</td>
<td>11,782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>11,210</td>
<td>11,475</td>
<td>11,744</td>
<td>12,015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doğu Ladini Gövde Hacmi Tablosu
Doğu Ladini Gövde Hacmi Tablosu

<table>
<thead>
<tr>
<th>admiration</th>
<th>Göğüs Çapları (cm)</th>
<th>Kabuklu Gövde Hacmi (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>32</td>
<td>10.004</td>
<td>10.206</td>
</tr>
<tr>
<td>34</td>
<td>10.914</td>
<td>11.117</td>
</tr>
<tr>
<td>40</td>
<td>14.803</td>
<td>15.020</td>
</tr>
</tbody>
</table>

(Adapt, 1971)
10.1.2 Bonitet Tablosu

Ladinin yetişme muhiti verimliliğinin (bonitetin) düzenlenmesinde, yaş bağımsız değişkeni ile üst boy bağımlı değişkeni arasındaki ilişkiye dayanan ve standart bir yaşta
(100 yıl) meşçere üst boyunu göstergeler kabul eden yöntem kullanılmıştır.

Ağacın büyümesini yansıtan, katsayıları en küçük kareler yöntemi ile kestirilen olasılık modelinden 10 yaş kademesine göre üretilen bonitet göstergeleri Çizelge 2'de verilmiştir.

Bir doğu ladin meşçeresinin kaçıcı bonitet sınıftında olduğunu tespit edilebilmesi için, önce bu meşçerenin üst boyuna erişmiş bir kaç ağacın (3-5 Adet) boyları ve yaşları ölçülen ortalama değerlerinin bulunması gerekir. Bundan sonra Çizelge 2'de bu ortalama yaş değerinin karşısında bulunan boy değerine ait bonitet endeksi hangi bonitet sınıf sınırları içinde kalıyorlsa, ladin meşçeresi o bonitet sınıfına giriyor demektir (Akalp, 1978).
ÇIZELGE 2: Doğu Ladini Yetişme Muhiti Verimliliği (Bonitet) Tablosu

<table>
<thead>
<tr>
<th>Yaş</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
<td>5.4</td>
<td>5.7</td>
<td>6.1</td>
<td>6.5</td>
</tr>
<tr>
<td>40</td>
<td>4.0</td>
<td>4.4</td>
<td>4.9</td>
<td>5.3</td>
<td>5.7</td>
<td>6.2</td>
<td>6.6</td>
<td>7.1</td>
<td>7.5</td>
<td>8.0</td>
<td>8.6</td>
<td>9.1</td>
<td>9.7</td>
</tr>
<tr>
<td>50</td>
<td>5.3</td>
<td>5.9</td>
<td>6.5</td>
<td>7.1</td>
<td>7.6</td>
<td>8.2</td>
<td>8.8</td>
<td>9.4</td>
<td>10.0</td>
<td>10.7</td>
<td>11.4</td>
<td>12.1</td>
<td>12.8</td>
</tr>
<tr>
<td>60</td>
<td>5.7</td>
<td>7.4</td>
<td>8.1</td>
<td>8.8</td>
<td>9.5</td>
<td>10.2</td>
<td>10.9</td>
<td>11.5</td>
<td>12.3</td>
<td>13.1</td>
<td>14.0</td>
<td>14.8</td>
<td>15.6</td>
</tr>
<tr>
<td>70</td>
<td>8.1</td>
<td>8.9</td>
<td>9.7</td>
<td>10.5</td>
<td>11.3</td>
<td>12.1</td>
<td>12.9</td>
<td>13.7</td>
<td>14.5</td>
<td>15.4</td>
<td>16.3</td>
<td>17.2</td>
<td>18.1</td>
</tr>
<tr>
<td>80</td>
<td>9.4</td>
<td>10.3</td>
<td>11.2</td>
<td>12.1</td>
<td>12.9</td>
<td>13.3</td>
<td>14.7</td>
<td>15.5</td>
<td>16.5</td>
<td>17.5</td>
<td>18.4</td>
<td>19.4</td>
<td>20.4</td>
</tr>
<tr>
<td>90</td>
<td>10.7</td>
<td>11.7</td>
<td>12.6</td>
<td>13.6</td>
<td>14.5</td>
<td>15.5</td>
<td>16.4</td>
<td>17.4</td>
<td>18.3</td>
<td>19.3</td>
<td>20.3</td>
<td>21.3</td>
<td>22.3</td>
</tr>
<tr>
<td>100</td>
<td>12.0</td>
<td>13.0</td>
<td>14.0</td>
<td>15.0</td>
<td>16.0</td>
<td>17.0</td>
<td>18.0</td>
<td>19.0</td>
<td>20.0</td>
<td>21.0</td>
<td>22.0</td>
<td>23.0</td>
<td>24.0</td>
</tr>
<tr>
<td>110</td>
<td>13.3</td>
<td>14.4</td>
<td>15.4</td>
<td>16.4</td>
<td>17.4</td>
<td>18.5</td>
<td>19.5</td>
<td>20.5</td>
<td>21.5</td>
<td>22.5</td>
<td>23.5</td>
<td>24.5</td>
<td>25.6</td>
</tr>
<tr>
<td>120</td>
<td>14.5</td>
<td>15.6</td>
<td>16.7</td>
<td>17.7</td>
<td>18.8</td>
<td>19.9</td>
<td>20.8</td>
<td>21.9</td>
<td>22.9</td>
<td>23.9</td>
<td>24.9</td>
<td>25.9</td>
<td>26.9</td>
</tr>
<tr>
<td>130</td>
<td>15.7</td>
<td>16.8</td>
<td>17.9</td>
<td>19.0</td>
<td>20.0</td>
<td>21.1</td>
<td>22.1</td>
<td>23.2</td>
<td>24.2</td>
<td>25.1</td>
<td>26.1</td>
<td>27.1</td>
<td>28.1</td>
</tr>
<tr>
<td>140</td>
<td>16.9</td>
<td>18.0</td>
<td>19.1</td>
<td>20.1</td>
<td>21.2</td>
<td>22.2</td>
<td>23.3</td>
<td>24.3</td>
<td>25.3</td>
<td>26.2</td>
<td>27.2</td>
<td>28.1</td>
<td>29.1</td>
</tr>
<tr>
<td>150</td>
<td>18.0</td>
<td>19.1</td>
<td>20.2</td>
<td>21.3</td>
<td>22.3</td>
<td>23.3</td>
<td>24.3</td>
<td>25.4</td>
<td>26.4</td>
<td>27.3</td>
<td>28.2</td>
<td>29.1</td>
<td>30.0</td>
</tr>
<tr>
<td>160</td>
<td>19.1</td>
<td>20.2</td>
<td>21.3</td>
<td>22.3</td>
<td>23.3</td>
<td>24.4</td>
<td>25.3</td>
<td>26.4</td>
<td>27.3</td>
<td>28.2</td>
<td>29.1</td>
<td>29.9</td>
<td>30.9</td>
</tr>
<tr>
<td>170</td>
<td>20.2</td>
<td>21.3</td>
<td>22.3</td>
<td>23.3</td>
<td>24.3</td>
<td>25.3</td>
<td>26.3</td>
<td>27.3</td>
<td>28.2</td>
<td>29.0</td>
<td>29.9</td>
<td>30.7</td>
<td>31.6</td>
</tr>
<tr>
<td>180</td>
<td>21.2</td>
<td>22.3</td>
<td>23.3</td>
<td>24.3</td>
<td>25.2</td>
<td>26.2</td>
<td>27.2</td>
<td>28.1</td>
<td>29.0</td>
<td>29.8</td>
<td>30.6</td>
<td>31.4</td>
<td>32.3</td>
</tr>
<tr>
<td>190</td>
<td>22.3</td>
<td>23.3</td>
<td>24.3</td>
<td>25.2</td>
<td>26.1</td>
<td>27.1</td>
<td>28.0</td>
<td>28.9</td>
<td>29.8</td>
<td>30.5</td>
<td>31.3</td>
<td>32.1</td>
<td>32.9</td>
</tr>
<tr>
<td>200</td>
<td>23.3</td>
<td>24.3</td>
<td>25.2</td>
<td>26.1</td>
<td>27.0</td>
<td>27.9</td>
<td>28.7</td>
<td>29.7</td>
<td>30.5</td>
<td>31.2</td>
<td>32.0</td>
<td>32.7</td>
<td>33.5</td>
</tr>
</tbody>
</table>
Doğu Ladini Yetişme Muhit Verimliliği (Bonitet) Tablosu

<table>
<thead>
<tr>
<th>Yaş</th>
<th>Bonitet Endeksleri (100 yaşında m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>6.7</td>
</tr>
<tr>
<td>40</td>
<td>10.1</td>
</tr>
<tr>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>60</td>
<td>16.4</td>
</tr>
<tr>
<td>70</td>
<td>19.0</td>
</tr>
<tr>
<td>80</td>
<td>21.3</td>
</tr>
<tr>
<td>90</td>
<td>23.3</td>
</tr>
<tr>
<td>100</td>
<td>25.0</td>
</tr>
<tr>
<td>110</td>
<td>26.6</td>
</tr>
<tr>
<td>120</td>
<td>27.9</td>
</tr>
<tr>
<td>130</td>
<td>29.0</td>
</tr>
<tr>
<td>140</td>
<td>30.1</td>
</tr>
<tr>
<td>150</td>
<td>31.0</td>
</tr>
<tr>
<td>160</td>
<td>31.8</td>
</tr>
<tr>
<td>170</td>
<td>32.5</td>
</tr>
<tr>
<td>180</td>
<td>33.1</td>
</tr>
<tr>
<td>190</td>
<td>33.7</td>
</tr>
<tr>
<td>200</td>
<td>34.2</td>
</tr>
</tbody>
</table>

(Akalp, 1976)
10.1.3 Hasılat Tablosu

ÇIZELGE 3: Doğu Ladılı Hasılat Tablosu (Doğal Orman)

<table>
<thead>
<tr>
<th>Yaş (Yıl)</th>
<th>Üst Boy</th>
<th>Orta Boy</th>
<th>Orta Sayı</th>
<th>Orta Boy</th>
<th>Orta Sayı</th>
<th>Orta Sayı</th>
<th>Orta Sayı</th>
<th>Genel Verim</th>
<th>Ortalama Verim</th>
<th>Ortalama Artı</th>
<th>Artı Mesre</th>
<th>Artı Mesre Yıllık Artı</th>
<th>Ortalama Artı</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.3</td>
<td>3.3</td>
<td>33.48</td>
<td>3.3</td>
<td>33.48</td>
<td>3.3</td>
<td>33.48</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>40</td>
<td>14.2</td>
<td>14.2</td>
<td>32.5</td>
<td>14.2</td>
<td>32.5</td>
<td>14.2</td>
<td>32.5</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>50</td>
<td>22.2</td>
<td>22.2</td>
<td>31.1</td>
<td>22.2</td>
<td>31.1</td>
<td>22.2</td>
<td>31.1</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>60</td>
<td>30.1</td>
<td>30.1</td>
<td>30.4</td>
<td>30.1</td>
<td>30.4</td>
<td>30.1</td>
<td>30.4</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>70</td>
<td>38.5</td>
<td>38.5</td>
<td>38.2</td>
<td>38.5</td>
<td>38.2</td>
<td>38.5</td>
<td>38.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>80</td>
<td>46.5</td>
<td>46.5</td>
<td>46.2</td>
<td>46.5</td>
<td>46.2</td>
<td>46.5</td>
<td>46.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>90</td>
<td>54.5</td>
<td>54.5</td>
<td>54.2</td>
<td>54.5</td>
<td>54.2</td>
<td>54.5</td>
<td>54.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>100</td>
<td>62.5</td>
<td>62.5</td>
<td>62.2</td>
<td>62.5</td>
<td>62.2</td>
<td>62.5</td>
<td>62.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>110</td>
<td>70.5</td>
<td>70.5</td>
<td>70.2</td>
<td>70.5</td>
<td>70.2</td>
<td>70.5</td>
<td>70.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>120</td>
<td>78.5</td>
<td>78.5</td>
<td>78.2</td>
<td>78.5</td>
<td>78.2</td>
<td>78.5</td>
<td>78.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>130</td>
<td>86.5</td>
<td>86.5</td>
<td>86.2</td>
<td>86.5</td>
<td>86.2</td>
<td>86.5</td>
<td>86.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>140</td>
<td>94.5</td>
<td>94.5</td>
<td>94.2</td>
<td>94.5</td>
<td>94.2</td>
<td>94.5</td>
<td>94.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>150</td>
<td>102.5</td>
<td>102.5</td>
<td>102.2</td>
<td>102.5</td>
<td>102.2</td>
<td>102.5</td>
<td>102.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>160</td>
<td>110.5</td>
<td>110.5</td>
<td>110.2</td>
<td>110.5</td>
<td>110.2</td>
<td>110.5</td>
<td>110.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>170</td>
<td>118.5</td>
<td>118.5</td>
<td>118.2</td>
<td>118.5</td>
<td>118.2</td>
<td>118.5</td>
<td>118.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>180</td>
<td>126.5</td>
<td>126.5</td>
<td>126.2</td>
<td>126.5</td>
<td>126.2</td>
<td>126.5</td>
<td>126.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>190</td>
<td>134.5</td>
<td>134.5</td>
<td>134.2</td>
<td>134.5</td>
<td>134.2</td>
<td>134.5</td>
<td>134.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>200</td>
<td>142.5</td>
<td>142.5</td>
<td>142.2</td>
<td>142.5</td>
<td>142.2</td>
<td>142.5</td>
<td>142.2</td>
<td>32.6</td>
<td>32.6</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Yaş (Yıl)</td>
<td>Üst boy (m)</td>
<td>Ort boy (m)</td>
<td>Araç Sağ (cm)</td>
<td>Çap (cm)</td>
<td>Dikik Yüzde (%)</td>
<td>Günde Hasılam (m³)</td>
<td>Günde Aşağı (%)</td>
<td>Hasım Toplamı (m³)</td>
<td>%</td>
<td>Genel verim (m³)</td>
<td>Araç verim (m³)</td>
<td>Genel verim %</td>
<td>Araç verim %</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>30</td>
<td>7.3</td>
<td>4.9</td>
<td>6066</td>
<td>7.2</td>
<td>35</td>
<td>180</td>
<td>12</td>
<td>12</td>
<td>12.4</td>
<td>3.2</td>
<td>306</td>
<td>4.0</td>
<td>7.3</td>
</tr>
<tr>
<td>40</td>
<td>12.1</td>
<td>3.3</td>
<td>6620</td>
<td>11.5</td>
<td>42</td>
<td>294</td>
<td>2365</td>
<td>12</td>
<td>12.4</td>
<td>3.2</td>
<td>306</td>
<td>4.0</td>
<td>7.3</td>
</tr>
<tr>
<td>50</td>
<td>12.1</td>
<td>2.2</td>
<td>2965</td>
<td>15.3</td>
<td>47</td>
<td>394</td>
<td>1235</td>
<td>16</td>
<td>28</td>
<td>11.3</td>
<td>3.3</td>
<td>422</td>
<td>6.7</td>
</tr>
<tr>
<td>60</td>
<td>15.1</td>
<td>15.5</td>
<td>2132</td>
<td>18.5</td>
<td>51</td>
<td>479</td>
<td>772</td>
<td>19</td>
<td>47</td>
<td>10.1</td>
<td>2.3</td>
<td>526</td>
<td>8.9</td>
</tr>
<tr>
<td>70</td>
<td>22.3</td>
<td>16.3</td>
<td>1642</td>
<td>21.5</td>
<td>54</td>
<td>551</td>
<td>191</td>
<td>71</td>
<td>68</td>
<td>8.1</td>
<td>1.8</td>
<td>619</td>
<td>11.0</td>
</tr>
<tr>
<td>80</td>
<td>25.4</td>
<td>21.3</td>
<td>1316</td>
<td>24.5</td>
<td>56</td>
<td>612</td>
<td>332</td>
<td>23</td>
<td>91</td>
<td>8.2</td>
<td>1.4</td>
<td>703</td>
<td>13.8</td>
</tr>
<tr>
<td>90</td>
<td>27.7</td>
<td>23.8</td>
<td>1276</td>
<td>27.1</td>
<td>58</td>
<td>504</td>
<td>237</td>
<td>25</td>
<td>116</td>
<td>7.5</td>
<td>1.2</td>
<td>760</td>
<td>14.9</td>
</tr>
<tr>
<td>100</td>
<td>29.5</td>
<td>25.7</td>
<td>597</td>
<td>20.7</td>
<td>59</td>
<td>729</td>
<td>175</td>
<td>25</td>
<td>142</td>
<td>7.0</td>
<td>1.2</td>
<td>851</td>
<td>16.7</td>
</tr>
<tr>
<td>110</td>
<td>31.1</td>
<td>27.5</td>
<td>762</td>
<td>32.2</td>
<td>60</td>
<td>748</td>
<td>134</td>
<td>27</td>
<td>168</td>
<td>6.6</td>
<td>0.3</td>
<td>917</td>
<td>18.5</td>
</tr>
<tr>
<td>120</td>
<td>32.4</td>
<td>28.9</td>
<td>658</td>
<td>34.5</td>
<td>60</td>
<td>782</td>
<td>105</td>
<td>28</td>
<td>197</td>
<td>6.2</td>
<td>0.8</td>
<td>979</td>
<td>20.2</td>
</tr>
<tr>
<td>130</td>
<td>33.5</td>
<td>30.2</td>
<td>574</td>
<td>36.8</td>
<td>60</td>
<td>812</td>
<td>84</td>
<td>25</td>
<td>226</td>
<td>6.0</td>
<td>0.7</td>
<td>1034</td>
<td>21.8</td>
</tr>
<tr>
<td>140</td>
<td>34.5</td>
<td>31.3</td>
<td>397</td>
<td>39.1</td>
<td>59</td>
<td>839</td>
<td>67</td>
<td>29</td>
<td>255</td>
<td>5.6</td>
<td>0.7</td>
<td>1094</td>
<td>23.4</td>
</tr>
<tr>
<td>150</td>
<td>35.5</td>
<td>32.3</td>
<td>451</td>
<td>41.3</td>
<td>59</td>
<td>963</td>
<td>56</td>
<td>30</td>
<td>285</td>
<td>5.4</td>
<td>0.8</td>
<td>1148</td>
<td>24.9</td>
</tr>
<tr>
<td>160</td>
<td>36.5</td>
<td>33.0</td>
<td>404</td>
<td>43.4</td>
<td>58</td>
<td>884</td>
<td>47</td>
<td>32</td>
<td>317</td>
<td>5.3</td>
<td>0.8</td>
<td>1201</td>
<td>26.5</td>
</tr>
<tr>
<td>170</td>
<td>36.7</td>
<td>33.7</td>
<td>365</td>
<td>45.2</td>
<td>57</td>
<td>903</td>
<td>39</td>
<td>32</td>
<td>349</td>
<td>5.2</td>
<td>0.6</td>
<td>1252</td>
<td>28.3</td>
</tr>
<tr>
<td>180</td>
<td>37.2</td>
<td>34.4</td>
<td>476</td>
<td>47.6</td>
<td>56</td>
<td>921</td>
<td>34</td>
<td>33</td>
<td>302</td>
<td>5.1</td>
<td>0.5</td>
<td>1303</td>
<td>29.5</td>
</tr>
<tr>
<td>190</td>
<td>37.7</td>
<td>35.0</td>
<td>303</td>
<td>49.5</td>
<td>55</td>
<td>937</td>
<td>28</td>
<td>32</td>
<td>414</td>
<td>4.6</td>
<td>0.5</td>
<td>1351</td>
<td>30.8</td>
</tr>
<tr>
<td>200</td>
<td>38.1</td>
<td>35.4</td>
<td>277</td>
<td>51.5</td>
<td>54</td>
<td>951</td>
<td>28</td>
<td>33</td>
<td>449</td>
<td>4.5</td>
<td>0.5</td>
<td>1400</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Doğu Ladinini Hasılat Tablosu (Doğal Orman)
Doğu Ladini Hasılat Tablosu (Doğal Orman)

<table>
<thead>
<tr>
<th>Yaş (Yıl)</th>
<th>Asıl Meşçere</th>
<th>Ara Meşçere</th>
<th>Yıllık Cari Artım</th>
<th>Genel verim</th>
<th>Ortalama artım</th>
</tr>
</thead>
<tbody>
<tr>
<td>El boy</td>
<td>Örtü boy</td>
<td>Asıl meşçere</td>
<td>Ara meşçere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>m</td>
<td>cm</td>
<td>m<sup>3</sup></td>
<td>m<sup>3</sup></td>
</tr>
<tr>
<td>30</td>
<td>6.5</td>
<td>3.9</td>
<td>935.5</td>
<td>6.1</td>
<td>144</td>
</tr>
<tr>
<td>40</td>
<td>9.9</td>
<td>6.5</td>
<td>574.5</td>
<td>3.6</td>
<td>226</td>
</tr>
<tr>
<td>50</td>
<td>13.1</td>
<td>9.2</td>
<td>393.5</td>
<td>12.3</td>
<td>319</td>
</tr>
<tr>
<td>60</td>
<td>15.0</td>
<td>11.9</td>
<td>289.9</td>
<td>15.7</td>
<td>390</td>
</tr>
<tr>
<td>70</td>
<td>18.6</td>
<td>14.3</td>
<td>222.5</td>
<td>18.2</td>
<td>449</td>
</tr>
<tr>
<td>80</td>
<td>20.6</td>
<td>16.6</td>
<td>177.4</td>
<td>20.7</td>
<td>590</td>
</tr>
<tr>
<td>90</td>
<td>22.9</td>
<td>18.6</td>
<td>145.2</td>
<td>22.9</td>
<td>543</td>
</tr>
<tr>
<td>100</td>
<td>24.5</td>
<td>20.4</td>
<td>121.6</td>
<td>25.1</td>
<td>581</td>
</tr>
<tr>
<td>110</td>
<td>25.1</td>
<td>22.0</td>
<td>103.4</td>
<td>27.2</td>
<td>613</td>
</tr>
<tr>
<td>120</td>
<td>27.4</td>
<td>23.4</td>
<td>89.2</td>
<td>29.2</td>
<td>642</td>
</tr>
<tr>
<td>130</td>
<td>28.5</td>
<td>24.6</td>
<td>77.8</td>
<td>31.2</td>
<td>667</td>
</tr>
<tr>
<td>140</td>
<td>29.6</td>
<td>25.8</td>
<td>68.7</td>
<td>33.1</td>
<td>589</td>
</tr>
<tr>
<td>150</td>
<td>30.5</td>
<td>26.8</td>
<td>51.2</td>
<td>35.0</td>
<td>709</td>
</tr>
<tr>
<td>160</td>
<td>31.3</td>
<td>27.7</td>
<td>48.6</td>
<td>36.7</td>
<td>721</td>
</tr>
<tr>
<td>170</td>
<td>32.0</td>
<td>28.5</td>
<td>49.4</td>
<td>38.5</td>
<td>743</td>
</tr>
<tr>
<td>180</td>
<td>32.7</td>
<td>29.3</td>
<td>44.9</td>
<td>40.3</td>
<td>766</td>
</tr>
<tr>
<td>190</td>
<td>33.3</td>
<td>29.9</td>
<td>40.9</td>
<td>41.9</td>
<td>771</td>
</tr>
<tr>
<td>200</td>
<td>33.8</td>
<td>30.5</td>
<td>37.6</td>
<td>46.6</td>
<td>784</td>
</tr>
</tbody>
</table>

Ortalama boy = 24.5 (22 - 27) m
Doğu Ladını Hasılat Tablosu (Doğal Orman)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4.9</td>
<td>2.5</td>
<td>1356.7</td>
<td>5.3</td>
<td>32</td>
<td>11.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>7.3</td>
<td>4.4</td>
<td>834.9</td>
<td>7.9</td>
<td>39</td>
<td>19.0</td>
<td>5248</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>9.7</td>
<td>5.3</td>
<td>571.5</td>
<td>10.5</td>
<td>44</td>
<td>253</td>
<td>2528</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>12.0</td>
<td>8.3</td>
<td>1196.2</td>
<td>12.7</td>
<td>47</td>
<td>317</td>
<td>1519</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>14.1</td>
<td>13.1</td>
<td>3231</td>
<td>14.9</td>
<td>50</td>
<td>366</td>
<td>965</td>
<td>14</td>
</tr>
<tr>
<td>80</td>
<td>16.1</td>
<td>12.0</td>
<td>2975.2</td>
<td>15.8</td>
<td>52</td>
<td>406</td>
<td>655</td>
<td>15</td>
</tr>
<tr>
<td>90</td>
<td>17.9</td>
<td>13.7</td>
<td>2110.2</td>
<td>18.8</td>
<td>54</td>
<td>445</td>
<td>455</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>19.5</td>
<td>15.3</td>
<td>1785.5</td>
<td>22.4</td>
<td>55</td>
<td>475</td>
<td>345</td>
<td>17</td>
</tr>
<tr>
<td>110</td>
<td>21.0</td>
<td>16.8</td>
<td>1501.3</td>
<td>25.4</td>
<td>55</td>
<td>503</td>
<td>264</td>
<td>18</td>
</tr>
<tr>
<td>120</td>
<td>22.4</td>
<td>18.2</td>
<td>1285.2</td>
<td>25.8</td>
<td>55</td>
<td>527</td>
<td>206</td>
<td>16</td>
</tr>
<tr>
<td>130</td>
<td>23.3</td>
<td>19.4</td>
<td>1191.2</td>
<td>25.4</td>
<td>55</td>
<td>543</td>
<td>184</td>
<td>19</td>
</tr>
<tr>
<td>140</td>
<td>24.3</td>
<td>20.7</td>
<td>998.2</td>
<td>25.9</td>
<td>55</td>
<td>566</td>
<td>133</td>
<td>20</td>
</tr>
<tr>
<td>150</td>
<td>25.9</td>
<td>21.7</td>
<td>888.2</td>
<td>26.4</td>
<td>55</td>
<td>585</td>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>160</td>
<td>26.5</td>
<td>22.3</td>
<td>796.2</td>
<td>25.9</td>
<td>54</td>
<td>596</td>
<td>92</td>
<td>22</td>
</tr>
<tr>
<td>170</td>
<td>27.7</td>
<td>23.3</td>
<td>717.3</td>
<td>31.3</td>
<td>53</td>
<td>612</td>
<td>79</td>
<td>22</td>
</tr>
<tr>
<td>180</td>
<td>28.5</td>
<td>24.7</td>
<td>820.2</td>
<td>32.7</td>
<td>52</td>
<td>644</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>190</td>
<td>29.3</td>
<td>25.4</td>
<td>595.2</td>
<td>24.0</td>
<td>52</td>
<td>553</td>
<td>57</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>30.3</td>
<td>26.3</td>
<td>545.2</td>
<td>25.5</td>
<td>51</td>
<td>546</td>
<td>52</td>
<td>23</td>
</tr>
<tr>
<td>210</td>
<td>31.3</td>
<td>27.3</td>
<td>515.2</td>
<td>26.5</td>
<td>50</td>
<td>536</td>
<td>50</td>
<td>23</td>
</tr>
</tbody>
</table>

Ust boy = 19.5 (17 - 22) m
<table>
<thead>
<tr>
<th>Yaş Yılı</th>
<th>Asıl Meşçere</th>
<th>Ara Meşçere</th>
<th>Yıllık Cari Artım</th>
<th>Genel verim</th>
<th>Ortalama arım</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Üst Boy</td>
<td>Kartboy</td>
<td>Oğlubay</td>
<td>泡泡</td>
<td>泡泡</td>
</tr>
<tr>
<td></td>
<td>cm m²</td>
<td>cm m²</td>
<td>cm m²</td>
<td>m³ %</td>
<td>m³ %</td>
</tr>
<tr>
<td>V. Bonitet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.4 1.7 22049</td>
<td>3.8 31 91</td>
<td>- -</td>
<td>- - 91</td>
<td>3.0 3.0 30</td>
</tr>
<tr>
<td>40</td>
<td>5.1 2.8 15641</td>
<td>6.1 37 153</td>
<td>8528 6</td>
<td>6 6.8 5.5 159 3.8 3.8 4.0 40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.8 4.0 2277 8.1 42 209</td>
<td>4254 9 14 6.3 3.4 223 6.4 4.2 4.5 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>8.4 5.3 6609 9.8 46 258</td>
<td>2468 10 24 5.7 2.4 282 8.6 4.3 4.7 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10.0 5.5 5243 11.3 48 299</td>
<td>1566 11 35 5.1 1.8 334 10.6 4.3 4.8 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>11.6 7.9 4181 12.8 50 334</td>
<td>1052 12 47 4.5 1.5 381 12.5 4.2 4.8 80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13.1 9.2 3425 14.3 52 364</td>
<td>756 13 60 4.2 1.2 424 14.3 4.0 4.7 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>14.5 10.5 2864 15.5 53 390</td>
<td>561 14 74 3.9 1.3 454 16.1 3.9 4.5 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>15.8 11.7 2438 16.9 53 412</td>
<td>426 15 89 3.7 0.9 501 17.8 3.7 4.6 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>17.1 12.9 2103 18.1 53 432</td>
<td>335 15 104 3.5 0.9 536 19.5 3.8 4.5 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>18.3 14.0 1536 19.4 53 450</td>
<td>267 16 120 3.3 0.7 570 21.1 3.5 4.4 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>19.5 15.3 1620 20.6 53 488</td>
<td>216 16 136 3.1 0.7 602 22.7 3.3 4.3 140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>20.5 16.4 1441 21.7 53 480</td>
<td>179 16 152 3.0 0.6 24.2 3.2 4.2 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>21.7 17.5 1291 22.9 52 492</td>
<td>150 18 170 3.0 0.6 662 25.7 33.1 4.1 160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>22.7 18.5 1165 23.9 51 504</td>
<td>126 18 158 2.3 0.6 692 27.2 3.0 4.1 170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>23.7 19.4 1057 25.0 51 514</td>
<td>108 18 206 2.3 0.6 720 28.5 2.3 4.0 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>24.8 20.5 965 26.1 50 523</td>
<td>92 18 224 2.7 0.3 747 30.0 2.7 3.9 190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>25.4 21.3 884 27.1 49 532</td>
<td>91 19 242 2.7 0.3 774 31.4 2.7 3.9 200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Akaç 1976)
10.2 Doğu Ladininde Ürün Çeşidi Hacim Oranları ile Çeşitli Çap İlişkileri

Meşçere içindeki tek ağaçların tüm ürün çeşitlerini (tomruk, maden direği, sanayi odunu ve yakacak odun) her zaman taşıması beklenemez. Ancak yetişme muhiti iyi olan yerlerde, ağaç boyu arttıkça, söz konusu ürün çeşitlerini taşıma olasılığı artmaktadır. Özellikle, tek ağaçların, 1. ve 2. sınıf tomruk taşıma oranları ülkemizde düşük bulunmuştur. Sözkonusu ürünlerin hektardaki bulunma oranları için böyle bir endişe söz konusu değildir.

Doğu Ladinin doğal yayılış alanı içinde alınan örnek alan ve örnek ağaçların taşdığı ürün çeşitleri hacim oranları, kabuklu ve kabuksuz olarak hesaplanmış, daha sonra her bir ürün çeşidi hacim oranları, göğüs çapına bağlı kurulan ve katsayları en küçük kareler yöntemine göre kastılan eşittiklerden, tek ağaç ve hektar için üretilmiştir. Bununla ilgili veriler Çizelge 4 ve Çizelge 5'de verilmiştir (Sun, et al., 1980)

Doğu ladininde çap ilişkilerine gelince, ormanlık uygulamalarda, kimi zaman kesilmiş ve yerinden uzaklaştırma gövdelerin sonadan göğüs çapı ve ağaç yarı boydaki çaplarının tahmin edilmesi gerekmektedir. Bu gibi uygulamalarda yürütülecek işlemlere daha gerçekçi sayısal değerler; küüt çapı / göğüs çapı / ağaç yarı boydaki çapı, göğüs çapı / ağaç yarı boydaki çap arasındaki ilişkilerden üretilmiş ve Çizelge 6'da verilmiştir (Sun et al., 1980).
<table>
<thead>
<tr>
<th>Kabuklu</th>
<th>Kabuklu - m³</th>
<th>Kabuk</th>
<th>Kabuk - m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çapa</td>
<td>Tomruk Sınıflar</td>
<td>Toplam</td>
<td>Toplam</td>
</tr>
<tr>
<td></td>
<td>% V₁</td>
<td>% V₂</td>
<td>% V₃</td>
</tr>
<tr>
<td>16</td>
<td>5.1</td>
<td>5.1</td>
<td>43.2</td>
</tr>
<tr>
<td>17</td>
<td>6.4</td>
<td>6.4</td>
<td>41.8</td>
</tr>
<tr>
<td>18</td>
<td>7.7</td>
<td>7.7</td>
<td>40.4</td>
</tr>
<tr>
<td>19</td>
<td>8.9</td>
<td>8.9</td>
<td>39.1</td>
</tr>
<tr>
<td>20</td>
<td>10.0</td>
<td>10.0</td>
<td>37.9</td>
</tr>
<tr>
<td>21</td>
<td>3.9</td>
<td>5.1</td>
<td>35.8</td>
</tr>
<tr>
<td>22</td>
<td>4.5</td>
<td>6.0</td>
<td>22.0</td>
</tr>
<tr>
<td>23</td>
<td>5.1</td>
<td>6.9</td>
<td>35.0</td>
</tr>
<tr>
<td>24</td>
<td>5.7</td>
<td>7.7</td>
<td>27.3</td>
</tr>
<tr>
<td>25</td>
<td>6.2</td>
<td>8.4</td>
<td>29.4</td>
</tr>
<tr>
<td>26</td>
<td>6.8</td>
<td>9.2</td>
<td>31.7</td>
</tr>
<tr>
<td>27</td>
<td>7.3</td>
<td>9.9</td>
<td>16.5</td>
</tr>
<tr>
<td>28</td>
<td>7.8</td>
<td>10.6</td>
<td>17.3</td>
</tr>
<tr>
<td>29</td>
<td>8.2</td>
<td>11.2</td>
<td>18.0</td>
</tr>
<tr>
<td>30</td>
<td>8.7</td>
<td>11.9</td>
<td>18.8</td>
</tr>
<tr>
<td>31</td>
<td>9.1</td>
<td>12.5</td>
<td>19.5</td>
</tr>
<tr>
<td>32</td>
<td>9.6</td>
<td>13.1</td>
<td>20.2</td>
</tr>
<tr>
<td>33</td>
<td>10.0</td>
<td>13.7</td>
<td>20.8</td>
</tr>
<tr>
<td>34</td>
<td>10.4</td>
<td>14.2</td>
<td>21.5</td>
</tr>
<tr>
<td>35</td>
<td>10.8</td>
<td>14.7</td>
<td>22.1</td>
</tr>
<tr>
<td>36</td>
<td>11.2</td>
<td>15.3</td>
<td>22.7</td>
</tr>
<tr>
<td>37</td>
<td>11.5</td>
<td>15.8</td>
<td>23.3</td>
</tr>
<tr>
<td>38</td>
<td>11.9</td>
<td>16.3</td>
<td>23.9</td>
</tr>
<tr>
<td>39</td>
<td>12.2</td>
<td>16.8</td>
<td>24.5</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
<td>17.3</td>
<td>25.0</td>
</tr>
</tbody>
</table>

ÇİZELGE 4: Ladin Türünde d₁,3 Çapa Bağlı Tek Ağaçta Kabuklu/Kabuksuz Ürün Çeşidi Hacim Oranları (% — m³)
<table>
<thead>
<tr>
<th></th>
<th>12.9</th>
<th>17.0</th>
<th>25.5</th>
<th>56.2</th>
<th>20.9</th>
<th>12.7</th>
<th>10.2</th>
<th>11.3</th>
<th>15.5</th>
<th>22.3</th>
<th>49.1</th>
<th>18.3</th>
<th>11.1</th>
<th>8.9</th>
<th>12.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>13.2</td>
<td>18.2</td>
<td>26.1</td>
<td>57.5</td>
<td>20.3</td>
<td>12.4</td>
<td>9.8</td>
<td>11.5</td>
<td>15.9</td>
<td>22.8</td>
<td>50.3</td>
<td>17.8</td>
<td>10.3</td>
<td>8.6</td>
<td>12.4</td>
</tr>
<tr>
<td>43</td>
<td>13.5</td>
<td>18.7</td>
<td>26.5</td>
<td>58.8</td>
<td>19.8</td>
<td>12.1</td>
<td>9.3</td>
<td>11.3</td>
<td>16.4</td>
<td>23.1</td>
<td>51.5</td>
<td>17.4</td>
<td>10.6</td>
<td>8.3</td>
<td>12.2</td>
</tr>
<tr>
<td>44</td>
<td>13.9</td>
<td>19.1</td>
<td>27.1</td>
<td>60.1</td>
<td>19.2</td>
<td>11.9</td>
<td>8.8</td>
<td>12.2</td>
<td>16.8</td>
<td>23.8</td>
<td>52.9</td>
<td>18.9</td>
<td>10.5</td>
<td>7.6</td>
<td>12.0</td>
</tr>
<tr>
<td>45</td>
<td>14.2</td>
<td>19.5</td>
<td>27.6</td>
<td>61.3</td>
<td>18.7</td>
<td>11.5</td>
<td>8.4</td>
<td>12.6</td>
<td>17.2</td>
<td>24.3</td>
<td>54.0</td>
<td>18.5</td>
<td>10.2</td>
<td>7.5</td>
<td>11.8</td>
</tr>
<tr>
<td>46</td>
<td>14.5</td>
<td>19.9</td>
<td>28.0</td>
<td>62.4</td>
<td>18.2</td>
<td>11.3</td>
<td>8.1</td>
<td>12.8</td>
<td>17.6</td>
<td>24.7</td>
<td>55.1</td>
<td>16.1</td>
<td>9.9</td>
<td>7.3</td>
<td>11.6</td>
</tr>
<tr>
<td>47</td>
<td>14.7</td>
<td>20.3</td>
<td>28.5</td>
<td>63.5</td>
<td>17.6</td>
<td>11.1</td>
<td>7.8</td>
<td>13.0</td>
<td>17.9</td>
<td>25.2</td>
<td>56.1</td>
<td>15.6</td>
<td>9.8</td>
<td>7.0</td>
<td>11.5</td>
</tr>
<tr>
<td>48</td>
<td>15.0</td>
<td>20.7</td>
<td>29.0</td>
<td>64.7</td>
<td>17.1</td>
<td>10.9</td>
<td>7.3</td>
<td>13.3</td>
<td>18.4</td>
<td>25.7</td>
<td>57.4</td>
<td>15.2</td>
<td>9.7</td>
<td>6.4</td>
<td>11.3</td>
</tr>
<tr>
<td>49</td>
<td>15.3</td>
<td>21.1</td>
<td>29.4</td>
<td>65.8</td>
<td>16.7</td>
<td>10.6</td>
<td>6.9</td>
<td>13.6</td>
<td>18.7</td>
<td>26.1</td>
<td>58.4</td>
<td>14.8</td>
<td>9.4</td>
<td>6.2</td>
<td>11.2</td>
</tr>
<tr>
<td>50</td>
<td>15.6</td>
<td>21.5</td>
<td>29.9</td>
<td>67.0</td>
<td>16.2</td>
<td>10.4</td>
<td>6.4</td>
<td>13.9</td>
<td>19.1</td>
<td>26.6</td>
<td>59.6</td>
<td>14.4</td>
<td>9.3</td>
<td>5.9</td>
<td>11.0</td>
</tr>
<tr>
<td>51</td>
<td>15.9</td>
<td>21.9</td>
<td>30.3</td>
<td>68.0</td>
<td>15.7</td>
<td>10.1</td>
<td>6.2</td>
<td>14.1</td>
<td>19.5</td>
<td>26.9</td>
<td>60.5</td>
<td>13.8</td>
<td>9.5</td>
<td>5.8</td>
<td>10.9</td>
</tr>
<tr>
<td>52</td>
<td>16.1</td>
<td>22.3</td>
<td>30.7</td>
<td>69.1</td>
<td>15.2</td>
<td>9.9</td>
<td>5.8</td>
<td>14.4</td>
<td>19.9</td>
<td>27.4</td>
<td>61.7</td>
<td>13.6</td>
<td>8.8</td>
<td>5.2</td>
<td>10.7</td>
</tr>
<tr>
<td>53</td>
<td>16.4</td>
<td>22.6</td>
<td>31.1</td>
<td>70.1</td>
<td>14.8</td>
<td>9.7</td>
<td>5.4</td>
<td>14.7</td>
<td>20.2</td>
<td>27.8</td>
<td>62.7</td>
<td>13.2</td>
<td>8.7</td>
<td>4.8</td>
<td>10.6</td>
</tr>
<tr>
<td>54</td>
<td>16.8</td>
<td>23.0</td>
<td>31.6</td>
<td>71.1</td>
<td>14.4</td>
<td>9.5</td>
<td>5.0</td>
<td>14.8</td>
<td>20.6</td>
<td>28.2</td>
<td>63.6</td>
<td>12.9</td>
<td>8.5</td>
<td>4.5</td>
<td>10.3</td>
</tr>
<tr>
<td>55</td>
<td>16.9</td>
<td>23.2</td>
<td>31.9</td>
<td>72.1</td>
<td>13.9</td>
<td>9.3</td>
<td>4.7</td>
<td>15.1</td>
<td>20.9</td>
<td>29.6</td>
<td>64.5</td>
<td>12.4</td>
<td>8.3</td>
<td>4.4</td>
<td>10.4</td>
</tr>
<tr>
<td>56</td>
<td>17.1</td>
<td>23.7</td>
<td>32.3</td>
<td>73.1</td>
<td>13.5</td>
<td>9.1</td>
<td>4.3</td>
<td>15.3</td>
<td>21.3</td>
<td>29.0</td>
<td>65.6</td>
<td>12.1</td>
<td>8.2</td>
<td>4.2</td>
<td>10.2</td>
</tr>
<tr>
<td>57</td>
<td>17.3</td>
<td>24.0</td>
<td>32.7</td>
<td>74.0</td>
<td>13.1</td>
<td>8.8</td>
<td>4.1</td>
<td>15.5</td>
<td>21.6</td>
<td>29.4</td>
<td>66.5</td>
<td>11.8</td>
<td>7.9</td>
<td>4.1</td>
<td>10.1</td>
</tr>
<tr>
<td>58</td>
<td>17.5</td>
<td>24.3</td>
<td>33.1</td>
<td>75.0</td>
<td>12.7</td>
<td>8.3</td>
<td>3.7</td>
<td>15.8</td>
<td>21.9</td>
<td>29.8</td>
<td>67.5</td>
<td>11.4</td>
<td>7.7</td>
<td>3.9</td>
<td>10.0</td>
</tr>
<tr>
<td>59</td>
<td>17.8</td>
<td>24.6</td>
<td>33.4</td>
<td>75.8</td>
<td>12.3</td>
<td>8.4</td>
<td>3.5</td>
<td>16.0</td>
<td>22.2</td>
<td>30.1</td>
<td>68.3</td>
<td>11.1</td>
<td>7.6</td>
<td>3.1</td>
<td>9.9</td>
</tr>
<tr>
<td>60</td>
<td>18.0</td>
<td>25.0</td>
<td>33.8</td>
<td>76.6</td>
<td>11.9</td>
<td>8.2</td>
<td>3.1</td>
<td>16.2</td>
<td>22.5</td>
<td>30.5</td>
<td>69.2</td>
<td>10.7</td>
<td>7.4</td>
<td>2.9</td>
<td>9.7</td>
</tr>
<tr>
<td>61</td>
<td>18.3</td>
<td>25.3</td>
<td>34.2</td>
<td>77.8</td>
<td>11.5</td>
<td>8.1</td>
<td>2.9</td>
<td>16.5</td>
<td>22.8</td>
<td>30.9</td>
<td>70.2</td>
<td>10.4</td>
<td>7.3</td>
<td>2.4</td>
<td>9.6</td>
</tr>
<tr>
<td>62</td>
<td>18.5</td>
<td>25.6</td>
<td>34.5</td>
<td>78.6</td>
<td>11.1</td>
<td>7.9</td>
<td>2.4</td>
<td>16.7</td>
<td>23.1</td>
<td>31.2</td>
<td>71.0</td>
<td>10.0</td>
<td>7.1</td>
<td>2.3</td>
<td>9.5</td>
</tr>
<tr>
<td>63</td>
<td>18.7</td>
<td>25.9</td>
<td>34.9</td>
<td>79.5</td>
<td>10.7</td>
<td>7.7</td>
<td>2.1</td>
<td>16.9</td>
<td>23.4</td>
<td>31.6</td>
<td>71.9</td>
<td>9.7</td>
<td>6.9</td>
<td>2.0</td>
<td>9.5</td>
</tr>
<tr>
<td>64</td>
<td>18.9</td>
<td>26.2</td>
<td>35.2</td>
<td>80.3</td>
<td>10.3</td>
<td>7.5</td>
<td>1.9</td>
<td>17.1</td>
<td>23.7</td>
<td>31.9</td>
<td>72.7</td>
<td>9.3</td>
<td>6.6</td>
<td>1.8</td>
<td>9.2</td>
</tr>
<tr>
<td>65</td>
<td>19.1</td>
<td>25.5</td>
<td>35.6</td>
<td>81.2</td>
<td>10.0</td>
<td>7.3</td>
<td>1.5</td>
<td>17.3</td>
<td>24.0</td>
<td>32.3</td>
<td>73.5</td>
<td>9.1</td>
<td>6.0</td>
<td>1.4</td>
<td>9.3</td>
</tr>
<tr>
<td>66</td>
<td>19.3</td>
<td>25.8</td>
<td>35.9</td>
<td>82.0</td>
<td>9.8</td>
<td>7.1</td>
<td>1.3</td>
<td>17.5</td>
<td>24.3</td>
<td>32.6</td>
<td>74.4</td>
<td>8.7</td>
<td>6.4</td>
<td>1.3</td>
<td>9.2</td>
</tr>
<tr>
<td>67</td>
<td>19.5</td>
<td>26.0</td>
<td>36.2</td>
<td>82.7</td>
<td>9.2</td>
<td>7.0</td>
<td>1.1</td>
<td>17.7</td>
<td>24.5</td>
<td>32.9</td>
<td>75.1</td>
<td>8.5</td>
<td>6.3</td>
<td>1.0</td>
<td>9.1</td>
</tr>
<tr>
<td>68</td>
<td>19.7</td>
<td>26.3</td>
<td>36.5</td>
<td>83.5</td>
<td>8.9</td>
<td>6.7</td>
<td>0.8</td>
<td>17.9</td>
<td>24.8</td>
<td>33.2</td>
<td>75.9</td>
<td>8.1</td>
<td>6.2</td>
<td>0.8</td>
<td>9.0</td>
</tr>
<tr>
<td>69</td>
<td>19.9</td>
<td>26.6</td>
<td>36.8</td>
<td>84.3</td>
<td>8.5</td>
<td>6.6</td>
<td>0.6</td>
<td>18.1</td>
<td>25.1</td>
<td>33.5</td>
<td>76.7</td>
<td>7.7</td>
<td>6.0</td>
<td>0.7</td>
<td>8.9</td>
</tr>
<tr>
<td>70</td>
<td>20.1</td>
<td>27.0</td>
<td>37.2</td>
<td>85.2</td>
<td>8.2</td>
<td>6.4</td>
<td>0.2</td>
<td>18.2</td>
<td>25.4</td>
<td>33.9</td>
<td>77.5</td>
<td>7.5</td>
<td>5.8</td>
<td>0.3</td>
<td>8.8</td>
</tr>
</tbody>
</table>

(Sun et al. 1980)
ÇİZELGE 5: Ladin Türünde d₃₅ Çapına Bağlı Heklardaki Kabuklu/Kabuksuz Ürün Çeşidi
Hacim Oranları (% — m³)

<table>
<thead>
<tr>
<th>Kabuklu</th>
<th>Kabuklu — m³</th>
<th>Kabuksuz — m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çap</td>
<td>Tomurk Smiflar</td>
<td>Toplam</td>
</tr>
<tr>
<td></td>
<td>% V₁</td>
<td>% V₂</td>
</tr>
<tr>
<td>13</td>
<td>39.9</td>
<td>35.4</td>
</tr>
<tr>
<td>14</td>
<td>37.4</td>
<td>35.1</td>
</tr>
<tr>
<td>15</td>
<td>36.1</td>
<td>34.0</td>
</tr>
<tr>
<td>16</td>
<td>34.9</td>
<td>32.9</td>
</tr>
<tr>
<td>17</td>
<td>33.1</td>
<td>30.9</td>
</tr>
<tr>
<td>18</td>
<td>31.1</td>
<td>29.1</td>
</tr>
<tr>
<td>19</td>
<td>30.0</td>
<td>28.0</td>
</tr>
<tr>
<td>20</td>
<td>29.0</td>
<td>28.0</td>
</tr>
<tr>
<td>21</td>
<td>28.1</td>
<td>27.1</td>
</tr>
<tr>
<td>22</td>
<td>27.1</td>
<td>26.1</td>
</tr>
<tr>
<td>23</td>
<td>26.1</td>
<td>25.1</td>
</tr>
<tr>
<td>24</td>
<td>25.1</td>
<td>24.1</td>
</tr>
<tr>
<td>25</td>
<td>24.1</td>
<td>23.1</td>
</tr>
<tr>
<td>26</td>
<td>23.2</td>
<td>22.2</td>
</tr>
<tr>
<td>27</td>
<td>22.2</td>
<td>21.2</td>
</tr>
<tr>
<td>28</td>
<td>21.2</td>
<td>20.2</td>
</tr>
<tr>
<td>29</td>
<td>20.2</td>
<td>19.2</td>
</tr>
<tr>
<td>30</td>
<td>19.2</td>
<td>18.2</td>
</tr>
<tr>
<td>31</td>
<td>18.2</td>
<td>17.2</td>
</tr>
<tr>
<td>32</td>
<td>17.2</td>
<td>16.2</td>
</tr>
<tr>
<td>33</td>
<td>16.2</td>
<td>15.2</td>
</tr>
<tr>
<td>34</td>
<td>15.2</td>
<td>14.2</td>
</tr>
<tr>
<td>35</td>
<td>14.2</td>
<td>13.2</td>
</tr>
<tr>
<td>36</td>
<td>13.2</td>
<td>12.2</td>
</tr>
<tr>
<td>37</td>
<td>12.2</td>
<td>11.2</td>
</tr>
<tr>
<td>38</td>
<td>11.2</td>
<td>10.2</td>
</tr>
<tr>
<td>39</td>
<td>10.2</td>
<td>9.2</td>
</tr>
<tr>
<td>40</td>
<td>9.2</td>
<td>8.2</td>
</tr>
<tr>
<td>41</td>
<td>8.2</td>
<td>7.2</td>
</tr>
<tr>
<td>42</td>
<td>7.2</td>
<td>6.2</td>
</tr>
<tr>
<td>43</td>
<td>14.3</td>
<td>18.3</td>
</tr>
<tr>
<td>44</td>
<td>14.8</td>
<td>18.3</td>
</tr>
<tr>
<td>45</td>
<td>15.2</td>
<td>18.6</td>
</tr>
<tr>
<td>46</td>
<td>15.4</td>
<td>18.9</td>
</tr>
<tr>
<td>47</td>
<td>15.7</td>
<td>19.2</td>
</tr>
<tr>
<td>48</td>
<td>16.0</td>
<td>19.5</td>
</tr>
<tr>
<td>49</td>
<td>16.3</td>
<td>19.7</td>
</tr>
<tr>
<td>50</td>
<td>16.6</td>
<td>20.0</td>
</tr>
<tr>
<td>51</td>
<td>16.8</td>
<td>20.3</td>
</tr>
<tr>
<td>52</td>
<td>17.1</td>
<td>20.2</td>
</tr>
<tr>
<td>53</td>
<td>17.3</td>
<td>20.8</td>
</tr>
<tr>
<td>54</td>
<td>17.6</td>
<td>21.0</td>
</tr>
<tr>
<td>55</td>
<td>17.8</td>
<td>21.3</td>
</tr>
<tr>
<td>56</td>
<td>18.1</td>
<td>21.5</td>
</tr>
<tr>
<td>57</td>
<td>18.3</td>
<td>21.8</td>
</tr>
<tr>
<td>58</td>
<td>18.6</td>
<td>22.0</td>
</tr>
<tr>
<td>59</td>
<td>18.9</td>
<td>22.2</td>
</tr>
<tr>
<td>60</td>
<td>19.0</td>
<td>22.5</td>
</tr>
<tr>
<td>61</td>
<td>19.2</td>
<td>22.7</td>
</tr>
<tr>
<td>62</td>
<td>19.5</td>
<td>22.9</td>
</tr>
<tr>
<td>63</td>
<td>19.7</td>
<td>23.1</td>
</tr>
<tr>
<td>64</td>
<td>19.9</td>
<td>23.3</td>
</tr>
<tr>
<td>65</td>
<td>20.1</td>
<td>23.5</td>
</tr>
<tr>
<td>66</td>
<td>20.3</td>
<td>23.7</td>
</tr>
<tr>
<td>67</td>
<td>20.5</td>
<td>24.0</td>
</tr>
<tr>
<td>68</td>
<td>20.7</td>
<td>24.1</td>
</tr>
<tr>
<td>69</td>
<td>20.9</td>
<td>24.3</td>
</tr>
<tr>
<td>70</td>
<td>21.1</td>
<td>24.5</td>
</tr>
<tr>
<td>71</td>
<td>21.3</td>
<td>24.7</td>
</tr>
<tr>
<td>72</td>
<td>21.5</td>
<td>24.9</td>
</tr>
<tr>
<td>73</td>
<td>21.7</td>
<td>25.1</td>
</tr>
<tr>
<td>74</td>
<td>21.9</td>
<td>25.3</td>
</tr>
</tbody>
</table>

(Sun et al. 1999)
ÇIZELGE 6 Doğu Ladıninde Göğüs Çapi/Kütük Çapi, Ağaç Yağ Boydaki Çap/Kütük ve Göğüs Çap İlişkilerinden Üretilen Veriler

<table>
<thead>
<tr>
<th>Ort. Kütük (cm)</th>
<th>d₁₅ (cm)</th>
<th>h₁₀₀ (cm)</th>
<th>d₁₅ (cm)</th>
<th>h₁₀₀ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>12.1</td>
<td>9.3</td>
<td>15</td>
<td>16.7</td>
</tr>
<tr>
<td>20</td>
<td>16.0</td>
<td>11.5</td>
<td>20</td>
<td>13.6</td>
</tr>
<tr>
<td>25</td>
<td>19.9</td>
<td>13.7</td>
<td>25</td>
<td>16.5</td>
</tr>
<tr>
<td>26</td>
<td>20.7</td>
<td>14.2</td>
<td>26</td>
<td>17.1</td>
</tr>
<tr>
<td>27</td>
<td>21.4</td>
<td>14.5</td>
<td>27</td>
<td>17.7</td>
</tr>
<tr>
<td>28</td>
<td>22.2</td>
<td>15.1</td>
<td>28</td>
<td>18.3</td>
</tr>
<tr>
<td>29</td>
<td>23.0</td>
<td>15.5</td>
<td>29</td>
<td>18.9</td>
</tr>
<tr>
<td>30</td>
<td>23.8</td>
<td>15.9</td>
<td>30</td>
<td>19.5</td>
</tr>
<tr>
<td>31</td>
<td>24.5</td>
<td>16.4</td>
<td>31</td>
<td>20.1</td>
</tr>
<tr>
<td>32</td>
<td>25.3</td>
<td>16.8</td>
<td>32</td>
<td>20.6</td>
</tr>
<tr>
<td>33</td>
<td>26.1</td>
<td>17.3</td>
<td>33</td>
<td>21.2</td>
</tr>
<tr>
<td>34</td>
<td>26.9</td>
<td>17.7</td>
<td>34</td>
<td>21.8</td>
</tr>
<tr>
<td>35</td>
<td>27.6</td>
<td>18.2</td>
<td>35</td>
<td>22.4</td>
</tr>
<tr>
<td>36</td>
<td>28.4</td>
<td>18.6</td>
<td>36</td>
<td>23.0</td>
</tr>
<tr>
<td>37</td>
<td>29.2</td>
<td>19.1</td>
<td>37</td>
<td>23.5</td>
</tr>
<tr>
<td>38</td>
<td>30.0</td>
<td>19.5</td>
<td>38</td>
<td>24.1</td>
</tr>
<tr>
<td>39</td>
<td>30.7</td>
<td>20.0</td>
<td>39</td>
<td>24.7</td>
</tr>
<tr>
<td>40</td>
<td>31.5</td>
<td>20.4</td>
<td>40</td>
<td>25.3</td>
</tr>
<tr>
<td>41</td>
<td>32.3</td>
<td>20.9</td>
<td>41</td>
<td>25.9</td>
</tr>
<tr>
<td>42</td>
<td>33.1</td>
<td>21.3</td>
<td>42</td>
<td>26.5</td>
</tr>
<tr>
<td>43</td>
<td>33.8</td>
<td>21.7</td>
<td>43</td>
<td>27.0</td>
</tr>
<tr>
<td>44</td>
<td>34.6</td>
<td>22.2</td>
<td>44</td>
<td>27.6</td>
</tr>
<tr>
<td>45</td>
<td>35.4</td>
<td>22.6</td>
<td>45</td>
<td>28.2</td>
</tr>
<tr>
<td>46</td>
<td>36.2</td>
<td>23.1</td>
<td>46</td>
<td>28.8</td>
</tr>
<tr>
<td>47</td>
<td>36.9</td>
<td>23.5</td>
<td>47</td>
<td>29.4</td>
</tr>
<tr>
<td>48</td>
<td>37.7</td>
<td>24.0</td>
<td>48</td>
<td>29.9</td>
</tr>
<tr>
<td>49</td>
<td>38.5</td>
<td>24.4</td>
<td>49</td>
<td>30.5</td>
</tr>
<tr>
<td>50</td>
<td>39.3</td>
<td>24.9</td>
<td>50</td>
<td>31.1</td>
</tr>
<tr>
<td>51</td>
<td>40.0</td>
<td>25.3</td>
<td>51</td>
<td>31.7</td>
</tr>
<tr>
<td>52</td>
<td>40.8</td>
<td>25.8</td>
<td>52</td>
<td>32.3</td>
</tr>
<tr>
<td>53</td>
<td>41.6</td>
<td>26.2</td>
<td>53</td>
<td>32.9</td>
</tr>
<tr>
<td>54</td>
<td>42.4</td>
<td>26.7</td>
<td>54</td>
<td>33.4</td>
</tr>
<tr>
<td>55</td>
<td>43.1</td>
<td>27.1</td>
<td>55</td>
<td>34.0</td>
</tr>
<tr>
<td>60</td>
<td>47.0</td>
<td>29.3</td>
<td>60</td>
<td>36.9</td>
</tr>
<tr>
<td>65</td>
<td>50.9</td>
<td>31.6</td>
<td>65</td>
<td>39.9</td>
</tr>
<tr>
<td>70</td>
<td>54.8</td>
<td>33.8</td>
<td>70</td>
<td>42.6</td>
</tr>
<tr>
<td>75</td>
<td>58.6</td>
<td>36.0</td>
<td>75</td>
<td>45.7</td>
</tr>
<tr>
<td>80</td>
<td>62.5</td>
<td>38.3</td>
<td>80</td>
<td>48.6</td>
</tr>
</tbody>
</table>

(Sun et al, 1980)
10.3 Doğu Ladındında Ster Emsali ve Ster Ağırlıkları

Çizelge 7: Doğu Ladini Ster Çevirme Faktörü (som hacim) ve Ster Ağırlıkları

<table>
<thead>
<tr>
<th>Ürün Çeşidi</th>
<th>Çevirme Faktörü</th>
<th>Ster Ağırlığı (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ortalama</td>
<td>Sınıf Dağılımı</td>
</tr>
<tr>
<td></td>
<td>Değerleri</td>
<td></td>
</tr>
<tr>
<td>Yakacak</td>
<td>0.667</td>
<td>0.598-0.736</td>
</tr>
<tr>
<td>Yarma Sanayi</td>
<td>0.797</td>
<td>0.710-0.894</td>
</tr>
</tbody>
</table>

Çizelge 8: Doğu Ladini Odunlarında Üretimden Sonra Geçen Zaman İçinde Rutubet ve Ster Ağırlıkları

<table>
<thead>
<tr>
<th>Üretimden Sonra Geçen Gün Sayısı</th>
<th>Yakacak Odun</th>
<th>Sanayi Odunu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rampada</td>
<td>Depoda</td>
</tr>
<tr>
<td></td>
<td>Rutb. %</td>
<td>Ağr. Kg</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>409</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>402</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>474</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
<td>467</td>
</tr>
<tr>
<td>40</td>
<td>72</td>
<td>460</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>452</td>
</tr>
<tr>
<td>60</td>
<td>69</td>
<td>445</td>
</tr>
<tr>
<td>70</td>
<td>66</td>
<td>437</td>
</tr>
<tr>
<td>80</td>
<td>65</td>
<td>430</td>
</tr>
<tr>
<td>90</td>
<td>63</td>
<td>422</td>
</tr>
<tr>
<td>100</td>
<td>62</td>
<td>412</td>
</tr>
<tr>
<td>110</td>
<td>60</td>
<td>407</td>
</tr>
<tr>
<td>120</td>
<td>59</td>
<td>400</td>
</tr>
<tr>
<td>130</td>
<td>57</td>
<td>392</td>
</tr>
<tr>
<td>140</td>
<td>56</td>
<td>385</td>
</tr>
<tr>
<td>150</td>
<td>54</td>
<td>377</td>
</tr>
<tr>
<td>160</td>
<td>53</td>
<td>370</td>
</tr>
<tr>
<td>170</td>
<td>51</td>
<td>362</td>
</tr>
<tr>
<td>180</td>
<td>50</td>
<td>355</td>
</tr>
</tbody>
</table>

(Küçük, 1987)
KAYNAKÇA

Dr. Mehmet YÜCEL

doğu ladini ormanlarının zararlı böceklerden korunması ve mücadele

Dendroctonus micans Anız Oluşu Bir Doğu Ladınında Gövde Hasılaması
Foto: Ö. Özkanç
11. DOĞU LADINİ ORMANLARININ ZARARLI BÖCEKLERDEN KORUNMASI VE MÜCADELE

Doğu ladini ormanlarında bulunan zararlı böcekler, iğne yapraklar, tonurcuğa, kozaalakta, kabuk ve kambiyumda ve odunda (teknik zararlı) zarar yapan böcekler olmak üzere gruplara ayrılmıştır. Bu böceklerden önemli olanların biyolojileri ve kısa koruma tedbirleri ile mücadeleyi şekilleri aşağıda açıklanmıştır.

11.1 Iğne Yaprak ve Sürgünde Zarar Yapanlar

11.1.1 Cephalcia abietis L. : (Ladin örücü yaprak arısı)

Zararı görüldüğünde larvalarına karşı mide ve temas zehirleri ile mücadele yapılır.

11.1.2 Pineus orientalis Dreyfus : (Ladin sürgün galbiği)

Bu galbiği adelgidae familyasından olup, kırmızımsı kahverengi veya siyahimsı renkte 1.6 - 1.9 mm. boyundadır.

Savaş: Çeşitli insektisitler kullanılır. Özellikle ladinlerde gal oluşmadan önce insektisit kullanmalıdır. Ayrıca, galler cont sistemik ilaçlar kullanılabilir.

11.2 Kozalakda Zarar Yapanlar

11.2.1 Dioryctria abietella Den. et Schiff (Ladin kozalak kelebeki).

Kozalakların tohum ve pulları üzerinde zarar yapar. Taze kozalaklar delik deşik eden tırtıllar yeni kozalaklara geçerler. Bazen tepe ve yan sürgünlerde de girecek sürgünleri oyarlar. Çanakçıoğlu tarafından 1957 yılında Trabzon Meryemana doğu ladin (P. orientalis) moşcerralle-rinde kozalakların % 100'ünde zarar yaptığı testet edilmiştir.

Uçma zamanı Haziran ve Temmuzdur. Dişi kelebek yumurtalarını genç kozalak ve tepe sürgünlerine ya teker teker veya küçük kümler t密集inde bırakır. Yumurtadan çıkan tırtıllar kozalaklar içinde iher kozalak-

Vaktinden önce dökülen kozalaklar, kıvrılan ve kızarmak suretiyle renk değişiren sürgünler, içlerindeki tırtılı toprağı geçmeden önce toplanarak yakılmalıdır.

11.3 Kabuk ve Kambiumda Zarar Yapanlar

11.3.1 Blastophagus minor Htg. (Küçük orman bahçeşanı)

Kabuk böcekleri (Ipidae) familyasına ait olan bu böcek 3.4 - 4 mm büyüklüğündedir. Boyun kalkanı siyah, kanat örtüleri kırmızıtrak kahverengidir. Sağında kanat örtülerinin birleştiği çizgilerin sağ ve solunda çıkartıldığı bulunmayışı bu böceği Büyük Orman Bahçeşanının dan ayırt etmeye yardımcı olur.

Tüm Avrupa'ya yayılmıştır. Türkiye'de Batı Karadeniz'in batısı, Marmara Bölgesinde ve tüm çam türlerinde ender olarak da ladin ve melez de zarar yapar. Yılda bir generasyon verir. Uçma zamanı Mart ve Nisan aylarına rastlar. Ana yolunun kırmızı kıvırcık.</p>

11.3.3 Dendroctonus micans Kug. (Dev Kabuk Böceği)
Kabukböcekleri (Scolytidae) familyasından ve kabukböceklerinin en irisi olan bu böcek 5.5 - 9.0 mm büyüklüğündedir. Avrupa ve Rusya'da yayılmıştır. Türkiye'de Doğu Karadeniz Ladin ormanlarını tehdit etmektedir. Artvin ormanlarında 75.000 - 100.000 hektar alanda zarar yapmıştır. Halen bu ormanlarımız için çok tehlikeli bir zararlı durumdadır.

D. micans'ın önemli yırtıcılarından olan Rhizophagus grandis laboratuvarlarda üretilerek ve iyi bir planlama ile D. micans'ın yaygın olduğu alanlara salınmaktadır. R. grandis yılda iki generasyon yaparak D. micans'lardan daha hızlı yırtmekte aynı zamanda kurtlar ve erginleri D. micans'ın hem kurt ve hem de erginlerini severek yemeleri nedeniyle bu zararlara karşı yapılan mücadelede etkili olmaktadır.

11.3.4 Ips sexdentatus Börner (Çam Oniki Dişli Kabuk Böceği)

Kabuk böcekleri familyasından (Scolytidae) ve Ips cinsinin en. ileriinden olan, bu kabuk böceği 3,5 - 8 mm büyüklüğündedir. Erginleri parlak kahverengidir. Çukur olan sağnırları her iki yanında altı 'şar diş (çıkıntı) vardır.

Lapland'daıı Kalkasya'ya Akdeniz ve Büyük Okyanus kıylarına kadar yayılmıştır. Türkiye'de sarıçam, karaçam ve ladin ormanlarında yaygındır. Sarıçam, karaçam, sahiçam, ladin, göknar ve erder olarak porsuk ağaçlarında zarar yapar.

Yılda iki generasyonu vardır. Birinci uçma zamanı nisan, ikincisi haziran ve temmuz aylarına rastlar. Ana yolu gövde üzerinde dikey iki (bazan 3 - 4) kıyla kıldur. I. sexdentatus üreme yiyimden başka beslenme, olgunluk, regenerasyon ve kışlama yiyimleri yapar.

Temiz bir işletme uygulaması ile böceğin coğalması önlenmiş olur. Zarar miktarının arttığı alanlarda uçma zamanından önce beş hafta önce haktında 5 - 6 adet tuzak ağaç hazırlananarak mücadele yapılmalıdır. Ferm.dirty tuzaklar ile mücadele etmek mümkündür.

11.3.5 Ips acuminatus Cyll. (Çam Altı Dişli Kabukböceği)

Kabuk böcekleri (Scolytidae) familyasından. Ergin 2,2 - 3,5 mm büyüklüğünde kahverengi ve sarıtrak gri kilıları vardır. Hafti me-yiili olan sağnının iki yanında üçer adet diş (çıkıntı) vardır.

Avrupa'dan Sibirya'ya kadar yayılmıştır. Türkiye'de Iğaz, Ayancık, Karabük, Eskişehir, Sarıkamış ve Elmalı ormanlarında tespit edilmiştir.
Genellikle yaşlı ağaçların tepe ve dallarını tercih eder. İnce kabuklu sarıçam, karaçam, ladin melez ve ardıçra da arız olur. Ormanın yan­gınlarından sonra kitle halinde üreyebilir.

Uçma zamanı nisan sonu veya Mayıs rastlar. Ana yolu 3 - 5 nadi­ren daha fazla kolludur. Bu yollar genç erginlerin olgunlaşma ve yaşlı erginlerin regenerasyon yiyimineden sonra meydan şeklindedir.

Tuzak ağaçları metodu ile mücadele yapılır. Tuzak ağaçlarının ka­buklarının böcek pupa yapmak üzere diri oduna girmeden önce soyulması gereklidir.

11.3.6 Pityopthorus mikrographus L.
(Ladin Küçük Kabukböceği)
Kabukböcekleri (Sodilyida) familyasından olan bu böceğin ergin­leri 1.3 - 2.5 mm büyüklüğündedir. Esmermel tarak kalınlığında ve orta Avrupa, Balkanlar ve Kafkasya'da yayılmıştır. Türkiye’de Doğu ve Batı Karadeniz, Uludağ ve Akdeniz Bölgesinde mevcuttur.

İnce kabuku tuzak ağaçları hazırlananar mücadele yapılır.

11.4 Kabukta Ve Odunda Zarar Yapanlar
11.4.1 Tetrapium castaneum L. (Ladin tekeböceği)
Teke böcekleri (Cerambycidae) familyasından olan bu zararın kanat örtüleri kahverengi arıten ve bacakları kırmızıtrak kahverengi­dir. Erginleri 9 - 18 mm boyundadır.

gelendiğinden aynı zamanda yüzeyde de olsa odunda zarar yaptığını için teknik zararlı bir böcekdir.

Uçma zamını Nisan - Temmuz aylarına rastlar. Dişleri 80 kadar yumurtayı gövde ve kabuk çatlakları arasına değişik yerlere koyar. Larvalar 10 - 14 günde yumurtadan çıkararak önce odunla kabuk arasında daha sonra diri odunda yiym yapar. Olgunlaşğında 2 - 4 cm odun içinde başı yukarı gelecek şekilde yilda 1 - 2 nesil verir.

Böcekli ağaçlar kesilip kabukları soyularak yakılmalı, zarar fazla olduğu takdirde tuzak ağaçları hazırlanarak mücadele yapılmalıdır.

11.4.2 Monochemus gallaprovincialis Oliv. (Çam Tekeböceği)

Böcekli ağaçların derhal imha edilmesi ve zararın fazla olduğu hallerde tuzak ağaçları hazırlanarak mücadele yapılması gerekir.
11.5 Odında Zarar Yapanlar

11.5.1 Urocerus gigas L. (Sarı gövdeli odun arısı)

Ladin, göknar, çam ve melez gibi iğne yapraklı ağaçlar ile meşe, kavak ve dişbudak gibi yapraklı türlerin odunlarında zarar yapar.

Sekonder zararlıdır. Larvaları odun içinde yollar açarak odunun teknik özelliklerini bozar.

KAYNAKÇA

doğu ladını hastalıkları ve mücadelesi

Hastalık Sonucu Kurumu Bir Doğu Ladını
Foto: Ö. Özkananç
12 DOĞU Ladini HASTALIKLARI VE MÜCADELESİ

Değişik yetişme muhtli şartlarında yer alan Doğu Ladini (Picea orientalis L.) gerek tohum, gerekse fidanlık, ağaçlama ve meşçere saflarında hastalık etmeni bazı biotik ve abiotik faktörlerin etkisi altında kalarak hastalımlarını ve zarar görmeleri herzaman için bahis konusudur. Hastalıklar, ağaçların muhtelif kısımları ve organları arasında; renk değişikliği, nekrozlar, çürüklük, kurumalar, dökümler, deformasyonlar, akıntılı gibi önemli karakteristik simptomlarıyla (Belirtiler) dikkat çekerler.

Bitki koruma tedbirlerinin zamanında alınması durumunda bir çok fidanlık ve ağaçlandırma sahası fungal (mantarı) hastalıklardan dolayı büyük ölçüde zarar görmektedir. Hastalık etmenini yok etmek ve hastalık yakalanan bitkiyi kurtarmak başlıca görev olmakla beraber hastalığın ortaya çıkmasına sebep olan şartları önceden önlemek, hastalıkla mücadele etmekten daha önemlidir.

Aşağıda belirtilen, biotik ve abiotik etmenlerin meydana getirdiği hastalıklar, Artvin (Borçka - Karagöl, Ardanuç, Şavşat), Trabzon (Meryemana, Karadağ, Of, Pazar), Giresun (Tirebolu, Kemerköy, Ordu) Orman Bölge Müdürlüklerine bağlı orman ve fidanlıklar ile gençleştirme alanlarında değişik yıllarda yapılan araştırmalar ve gözlemler sırasında tesbit edilmiştir.

12.1 Abiotik Hastalıklar

Abiotik etmenler, meydana getirdiği zaralar dışında, kültür ve meşçrelere zarar verir ve hastağın bir duruma gelirerek çeşitli mantarların bulunmasına ve böceklerin üremesine uygun bir ortam yaratmak gibi etkilerde yaparlar.
12.1.1 **Rüzgar**
Teze sürgünleri, iğne yaprakları büker ve yaralar. Sürekli rüzgarların kurutucu etkisiyle rüzgar tarafından tüm dallarını kaybeder ve bayrak oluşumu yapar. Çok kuvvetli fırtınalar ağaçların kökünden sökerek devirir.

12.1.2 **Kar ve Buz**
Bodur bırakır, sararma ve iğne yapraklarının dökülmesine neden olur. Buz kristalleri ağırlığı nedeniyle ağaçlarda kar ile birlikte tepe ve gövdeleinin kırılmasıyla da yol açar.

12.1.3 **Kış Ölümü**
Kış zararı adıda verilir. Çoğunlukla onbeş yaşına kadar olan genç ağaçlarda, nadiren yaşlı ağaçlarda dalların kuruması ile ortaya çıkar. Ağaçın gelişimi durur veya yavaşlar; çok zaman kambiyumun kuruyup renginin değiştiği ve ağaçın yaşamının sona erdiği de olur. Tededen kuruma şeklinde göze çarpar. Sadece ağaçın dış kabuğu, topruk, sürgün ve ibreleri de öldürülebilir.

12.1.4 **Toprak Rutubeti Fazlalığı**
Sel baskınlarından sonra meydana gelir, kök sisteminde çürüklük yaşar (Temmuz 1987, Tirebolu Fidanlığı)

12.1.5 **Kronik Su Noksanlıği**
Özellikle fidanlıklarda uzun bir zaman içinde taban suyu düzeyinin değişilmesi; ayrıca kanal yapımı donaj gibi yapay yolla meydana gelen su seviyesi sinyalini, kronik su noksansının ortaya çıkmasına neden olur. Bu durum bitkilerde büyümenin duraklaması, kuru mantarlaşması ve sonunda fidanların küme halinde olması suretyle kendini belli eder.
204
12.1.6 Bor ve Tuzlar

Toprak altı suyun yüksek oluşu, tepedeki kurumasına sebep olur. Çaresi, toprağın kötü niteliklerini gidermek, kuruyan dalları kesmektedir.

12.1.7 Akut Su Noksarlığı (Kuraklık Zararı)

Tepedeki kuruması adda veriliyor. Fidanlıklarda kafi miktarda suyun olmaması, yüksek sıcaklık nedeniyle toprakla sıcaklığın artması, buharlaşma miktarını artırığı gibi, toprağın az veya çok kurumasına, ayrıca bitkilerin terlemelerine fazla su yitmesine neden olur. Bunun sonucu bitki veya bitki kısımları, yaprak ve genç sürgünler solar, kırmızımsı bir renk alarak esmerleşir ve kuruyarak dökülür.

12.1.8 Güneş Yanıklığı (Kabuk Yanması)

12.1.9 Don

Sonbahar donlarına erken, ilkbahar donlarına geç donlar da denir. Sonbahar donları genç sürgün ve ibrelerin ölümüne, ilkbahar donları ise tohum cursok ölümüne ve dökülmesine, yeni ibre ve taze sürgünle zara verir.鳞柄对于冬眠的生物来说，是春季的开始。Don; ölüümü, don çatlığı ve çiplak den olmak üzere üç şekilde zara yapar.

12.1.9.1 Don Ölümü

Don halkası ve don kuruması şeklinde görülür. Genç bitkileri ve ağaçların bazı kısımlarını dondurur. Dönmüş bitki ve kısımlar solarak...
burusur, iğne yaprak ve sürünleri aşağıya sarkar, renkleri başlangıçta kırmızımsı kahverengi ise de sonraları siyahlaşır.

Don Halkası: 2 - 6 yaşındaki ladinlerde, odunun enine kesitinde, dar yıllık halkalar halinde görülür. Özellikle ilkbahar donunda kambiyum etkinliği başlanmış ise o zaman bir halka yerine iki halka meydana gelir.

Don Kurutması: Soğuk, az karlı kışlarda, özellikle kıştan ilkbahara geçişte, genç sürünlerde, iğne yaprakların yitirilmesine neden olur. Yani iğne yapraklar dondan birkaç gün veya birkaç hafta sonra ve özellikle dondan sonraki nemli, sıcak havalarda kırılır ve ilkbahar mevsiminde dökülür. Yani iğne yapraklar dondan birkaç gün veya birkaç hafta sonra ve özellikle dondan sonraki nemli, sıcak havalarda kırılır ve ilkbahar mevsiminde dökülür. Tomurcuların sadece zayıf olanları ölü. Böylece süründe dondan zarar gören kısmın, sonradan iğne yapraklarının azlığı veya yokluğu nedeniyle ilgiyi çeker. En tehlikeli dönem gençlik ve özellikle çimlenme dönemidir. Şiddelli soğuklarda yaşlı ağaçların yaprak ve sürünleri de donar. Fidanlarda, donkurutmasına karşı alınabilecek koruyucu önlemler şunlardır.

- Fidanlıkların yerlerini seçerken don yataklarından kaçınmalısınız.
- Ekimler ilkbaharda ve geç yapılmalıdır.
- Ekim yastıklarını dallara örtmel, çimlendikten sonra dikey duruma getirilmeli ve bir süre sonra uzaklaştırılmalıdır.
- Yastıkların çatalardan yapılmış kafeslerle örtmel ve gerekirse üzerine ilerletmelidir.
- Kıraklı bitkileri güneş doğmazdan önce soğuk su ile sulamalıdır. Bu surette donun çözülmesi yavaşlatılmış olur.
- Azotlu maddelerle fazla miktarda gübrelemekte kaçınılmalıdır.
- Fidanlığın uygun yerlerinde fazla duman veren maddeler yıkımalıdır.

12.1.9.2 Çıplak Don

Don çıkarması, don altması adı da verilir. Nemli mineral toprakta, malç eksikliği sonucunda, fidelere çöker ve soğuggage maruz kalar. Özellikle...

- Kılı toprakları 1/2 - 1/3 oranında kum karıştırılır.
- Ekim yastıkları yükseltir ve yastıklar arasındaki kısımlar alcaltılır. Bu önlem yastıkların daha iyi kurumasına yardım eder.
- İki dikim veya fidan arası yosun, yaprak, isterdi gibi ısıyı güç ileten maddelerle örtülür.
- Otları koparırken fidan sıraları arasında meydana gelen çukurlar toprakla doldurulur.
- Yaz sonunda yaban otlanı koparılmayıptoprağın hafif bir et kabaskasıyla örtü dü bulunması sağlanır.
- Sonbaharda fidanların bozucu yanlardan toprak çekmek suretiyle doldurulur veya yastıklar üzerine toprak eteyerek fidanlar zara görmeyecek şekilde toprakla örtülür.

12.1.10 Besin Maddesi Fazlalığı ve Toprak Zehirlenmesi

Kireç klorozu ise pH'si yüksek (8.3) ve ağır bir şekilde kireçlenmiş fidanlık topraklarında ortaya çıkar.
12.1.11 Besin Maddesi Yetmezliği

Besin maddesi yetersizliği tüm bitkinin genellikle gelişimine engel olarak onların zayıf büyümeye ve kısa boyu kalmasına, yapraklardaki besin maddesi yetmezliği, hem yaprakların küçük kalmasına, hem de sarımsı yeşil bir renk almasına neden olur. Belirtiler; renk değişikliği, iğne yapraklar dökülmesi, kıvrılma ve organların ölümüdür.

Fosfor Yetersizliği: Fazla kullanılan, yorgun, kumlu fidanlık topraklarında ortaya çıkar. Iğne yapraklar soluk yahut mavi - yeşil renge dönüşür. **Potasyum yokluğu** iğne yaprakların soluk sarı bir renk almasına, **kalsiyum yokluğu** ise kırmızı-kahverengi renklenmelere neden olur. Besin maddesi yetersizliğine karşı alınabilecek önlemlerin başında geleni, eksik besin maddelerinin toprağa verilmesi dır.

Demir Eksikliği - Sararma (Kloroz) Hastalığı

Sararma hastalığında fideciklerin bütün yaprakları normal yeşil rengini kaybeder, sarımsı rengi alır. Kökler, gövdelere ve yapraklarda büyümeye yavaşlar, uç tomurcuların gelişmesi durur ve fidecikler bodurlaşır.

Hastalıktar mücadele için, bitkiye kolaylıkla alınabilecek bileşimde demir verilmesiyle mümkün olur. (Sequestrene 130 - Fe) bu gayeye uygun olarak hazırlanmış bir bileşiktir, kullanılır. Bu, % 6 metalik demir ihtiva eden ve suda çok kolay eriyebilen bir demir bileşiği sodiyum tuzudur. Kullanma miktarı bitkinin büyüklüğüne ve klorozun durumuna göre değişir. Fidanlıklarda 1 m² lik saha için 1 - 5 gr kullanılır.
İlaçlama Şekli ve Zamanı: Olduğu şekilde, doğrudan değil de doğruya toprağa mütecanis bir şekilde tatbik edilmesini temin için kuru kum veya kuru toprak ile de kanıtılabılır. Tatbikatından sonra toprağı çapa ile mütecanis bir şekilde tatbik edilmesini temin için kuru kum veya kuru toprak ile de kanıtılabılır. Tatbikatından sonra toprağı çapalı, tırnaklamak veya sulamak ile ilacın, köklerin bulunduğu bölgeye ulaşması sağlanmalıdır. En iyi tatbikat zamanı, ilkbahar başlangıcı yani, vejetasyonun başladığı devredir.

12.2 Biotik Hastalıklar

Bulaşma ile başlayan ve bulaşıcı olan bu hastalıklara, virüs, bakteri, mantar, parazit tohumlu bitki ve parazit hayvanlar (Nematod, Gal sinekleri, Böcekler v.s.) gibi patojenler neden olur.

12.2.1 Parazit Bitkiler

Arceuthobium spp. (Burç, Bodur ökse otu)

Gövde ve dallarda 5 - 10 yıl kadar gelişme gösterir. Bulaşma yerlerinde şişkinlikler, çadı süpürgesi, kanser, çatıcı geriye ölüm, büyüme engel olma, tohum verimini azaltma ile erken ölüme sebeb olur. Ayrıca gövde enfeksiyonlarında kereste değeri düşürür.

Usnea spp. (Liken)

12.2.2 Mozaik Virus Hastalığı

Genç fidanlarda görülür. İğne yapraklarında mozaik biçiminde leke veya sertler halinde sahnesi renklemelere ve daha sonra da ölümli ne yol açmaktadır. Yaprakların küçük kalması ve deformasyonu biç-

12.2.3 Bakteriyel Hastalıklar

Agrobacterium tumefaciens (kök kanseri)

Corynebacterium spp.

Bitki kısım ve organlarının yer ve biçim değiştirilmesine, yayılan sürgün oluşumuna neden olur. Hastalıklı sürgünler normalden daha kalındır. Solgun genç yapraklar birbiri içerisine girer ve terminal tohumcuk vaktinden evvel ölür.

12.2.4 Fungal Hastalıklar

Orman ağaçlarında böceklerden sonra en önemli hastalık etmeni mantarlardır. Heterotrof, bir veya birçok hücreli, klorofil ve plastidlerden yoksun ve sporla çoşalan mantarlar saprofit veya parazit olarak yaşarlar. Saptanan mantarlar phycomycetes, Ascomycetes, Basidiomycetes ve Deuteromycetes (= Fungi imperfecti) sınıflarına mensubdur.

12.2.4.1 Fidanlık Hastalıkları

Damping-off Hastalığı: Çoğu zaman toprakta saprofit olarak yaşayan ve elverişli koşullarda canlı biliklere giren bir kism toprak mantarlarının sebep olduğu hastalıklar kompleksine verilen adir. Tohum ekimi ve çımlenmeden başlayarak fidanın ve fidanların taze sulu kısımların 210
larna toprak altında veya toprak düzeyinde saldırarak, bunların devrilme, çürüme ve ölmenine neden olur. Fideciklerde görülen en yaygın ve ekonomik bakımından en önemli zararlı bu hastalık neden olur. Çokgünün basilıkta gözlemlenen fideciklerin toprak altındada veya toprak düzeyinde saldırarak, bunların devrilmeye, çürüme ve ölmenine neden olur. Fideciklerde görülen en yaygın ve ekonomik bakımından en önemli zararlı bu hastalık neden olur. Çoğunlukla yastıklardaki fidecikler tamamen tahrip edilir. Tohumlar düşük oranlarda çimlenir veya çok az sayıda fidecik çıkar.

Pythium debaryanum, Phytophthora cactorum, sclerotinia sclerotiorum, pythium ultimum, P. irregulare, Fusarium avenaceum, F. oxysporum, F. culmorum, F. sporotrichoides, cylindrocarpin radicicola, Cylindrocladium scoparium, Pestalozzia, funerea, Rhizoctonia solani adı mantarlar damping-off hastalığına sebep olur.

Mücadelesi: Kültürel, fiziksel ve kimyasal koruyucu önlemlerdir. Kültürel önlemler önemlidir.

- Hastalık yastıkları 2-5 yıl kullanmamak ve münavebe uygulamak.
- Hastalanmış ve ölmüş fidecikleri uzaklaştırmak.
- Temiz tohum kullanmak ve tohum dezinfeksiyonu (ilaçlama) yapmak. Tohumun bir veya daha fazla sayıda kimyasal madde ile işlem görmesi önemli hastalığı önlenme yöntemidir. Kullanılan Madde: Captan, Thiram, Ferbam, Arasan, Korsikal-18 (çıvasız tohum ilaçısı), civa klorid (calomel), chloranil, Dichlona, Semesan, Terrachlor (PCNB), formaldehid, Çinke oksit, Carasan, Daxon, Ceredon T'dir.
- Seralarda toprağın aşırı sıcaklıkta bulunma veya küfür sıcaklıkta sterilizasyonu.
- Ekimden önce toprak dezinfeksiyonu (sülfürik asit, fosforik asit, Aliminimum sülfat, formaldehyde, Basamid, Japam. Methyl bromid) yapmak ve ekimden sonra fungicid (Pamorsal Forte, Captan - 50, Arasan v.s. gibi) maddelele koruyucu mücadele yapmak.

Fidanlıklarında,ibre dökümü, kahverengileşme, solgunluk, kloroz, deformasyon ve kuruğa gibi zarar yapan diğer önemli mantarlar ise şunlardır: Diplodia pinea, Botrytis cinerea (gri - küf), Cladospori-
um aecidicola, Ascochyta piniperda, Pissum sativum, Phymatrichum omnivorum, Rosellinia aguila, Phomopsis occulta, Gremmeniella abietina, Lophodermium picea, L. macrosporum ve Herpotrichia nigra'dır.

12.2.4.2 Tohum Hastalıkları

Pucciniastrum areolatum: Bu pas mantarı, pyknid ve aecidii'lerini ağaçlarda ladının kozaalaklarda geliştirir ve tohum miktarı ile bunların çimlenme yeteneğini düşürür.

Küf Mantarları (Penicillium, Aspergillus, Alternaria, Botrytis, Fusarium) depolarda çok sık ve hava almayıacak şekilde istiflenmiş tohumlarda sık görülebilir. Özellikle oldukça yüksek sıcaklıkta ve rutubetli olarak depolanan tohumlar sızatle sahirin uyuşması. Alınabilecek önlemler şunlardır;

- Tohumları kuru depolama veya sık sık üst üst etme,
- Tohumları iyi havalandırma yaparak düşük sıcaklıklarda saklama,
- Düşük dozlu fungisidler ile dezenfeksiyon etmek ve tohumları yaralamamak.

12.2.4.3 Pas Hastalıkları

Chrysomyxa arctostaphylii = Ladin cad süpürgesi pası, chrysomyxa pyrolae = kozaalak pası, pucciniastrum padi = kozaalak pası, chrysomyxa rhododendri, C. abietis = Ladin kabarcık pası ve sarılık hastalığı.

12.2.4.4 İğne Yaprak ve Sürgün Hastalıkları

Fidanlıık, plantasyon ve doğal meşcereerde iğne yaprak ve sürgünlere arız olarak, ibre kızarması ve dökülmesi, yanıkık, kurum, lekeler, çeşitli deformasyon ve geriye ölüm gibi simptomları tanınan ve zararlı olun önemli mantarlar ise;
Diedickia piceae, Septoria parasitica, Herpotrichia nigra, Lophodermium (lirula) macrosporum, L. piceae, Sarcoclodrilum pi- niperda, Lophophacidium hyperboreum, Rosellinia herpotrichioides, rhizosphaera kalkhoffii, Sirococcus strobilinus.

Curcurbitaria picea: Tomurcukların deformasyonuna ve öldü- müne sebep olur.

12.2.4.5- Gövde - Kambiyum ve Kabuk Hastalıkları

Nectria cucurbitula, Durella livida, Dermalea livida, Pleurotus mitis, Stereum sanguinolentum, Pezicula eucrita, Cenangi- um abietis, Ascochyta piniperda, Crumenula abietina, Cylindro- carpon cylindroides, Valsa (Cytospora) Kunzei var. Piceae.

Bu mantarlar, diabek (geriye ölüm), kanser, akıntı, gal, nekroz, ka- bük renk değişimi, şekil bozulması, iğne yaprak ve sürgün dökümü, dal yarıklığı gibi belirtiler ile dikkat çekerler.

12.2.4.6 Kök Hastalıkları Yapan Mantarlar

12.2.4.7 Gövde ve Kesilmiş Odunlarda Renkleme Yapan Mantarlar

Ceratocystis picea, C. carum, C. coerula, Ceratocystis pi- ceaperda, Macrophoma macrosporium, Sclerophoma entoxylina,
Cladophora fastigiata, Discula brunneo-tingens, Endoconidio-phora Coerulescens, chlorosplenium aeruginosum.

12.2.4.8 Odun Tahripçisi Mantarlar

Bu mantarlar, dikili canlı - dikili kuru, kesilmiş ağaç gövdeleri, kütkleri ile işlenmiş ve kullanılmış odunlarda çürüklük etmeyenler. Beyaz ve esmer çürüklük yaparlar. Üreme organları (Basidiokarp) hymenium, trama ve kabukları çişer, çeşitli büyüklük ve şekillerde olur. En önemlileri şunlardır.

KAYNAKÇA

ABATAY, M. 1986. Doğu Karadeniz Bölgesinde Trametes (Fomes) pini (Thore ex. F1.) Fr’in Yayılışı Konukçulardan ve Zaran Üzerine Araştırmalar. (Doktora Tezi).

214

(IUFRO), 1963. Internationally Dangerous Forest Tree Diseases. Miscellaneous Publication No: 939, Forest Service USDA.

Dr. Erol ÖKTEM

13. Çözümün Teknolojik Özellikleri

Doğu Ladini Odununda Lifere Paralel Çekme Deneyi Deneyi
13 DOĞU LADİNI ODUNUNUN TEKNOLOJİK ÖZELLİKLERİ.

13.1 Ladin Odununun Makroskopik Özellikleri

13.2 Ladin Odununun Mikroskopik Özellikleri

Ladin odununda bulunan hücre dokusu elemanları şunlardır:

1. Boyuna Elemanlar
 — Boyuna Traheidler
 — Boyuna Dizi Traheidler
 — Boyuna Salgı Hücreleri

2. Enine Elemanlar
 — Özışınları
 — Enine Salgı Hücreleri

3. Reçine Kanalları
 — Boyuna Reçine Kanalları
 — Enine Reçine Kanalları

13.2.1 Boyuna Traheidler

Bütün iğneyapıları taksonlarda olduğu gibi, doğu ladini odunun yapısında da, hacim bakımından en büyük kısmı boyuna trahheidler oluşturur (Çizelge 1).
Çizelge 1 Ladin ve diğer çeşitli iğne yapraklı ağaç odunlarında çeşitli hücrelerin hacim bakımından % iştirak oranları (Forsaith, 1926).

<table>
<thead>
<tr>
<th>Ağaç Cinsi</th>
<th>Traheidler</th>
<th>Özirişleri</th>
<th>Paranşim</th>
<th>Reçine Kanalları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladin</td>
<td>93 - 95</td>
<td>5 - 7</td>
<td>—</td>
<td>0.2 - 0.3</td>
</tr>
<tr>
<td>Göknar</td>
<td>91 - 94</td>
<td>6 - 10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Çın</td>
<td>91 - 95</td>
<td>5 - 8</td>
<td>—</td>
<td>0.5 - 1.0</td>
</tr>
</tbody>
</table>

Ülkemizde doğu ladinı odunu üzerinde yapılan bir çalışmaya göre, % 91.39 luk hacim, boyuna traheidler ile boyuna reçine kanalları ve çevresindeki salgı hücrelerinden meydana gelmektedir. Reçine kanalları ve çevresindeki salgı hücrelerinin ortalama olarak % 1.39'lu bir hacmi kapladığı ve böylece doğu ladinı odunun hacmen % 90 inin boyuna traheidlerden oluştuğu ortaya konulmuştur (Topcuoğlu, 1985).

Şekil 1. Boyuna traheidlerde bordürlü geçitler
(Foto: M. Y. Topcuoğlu)

220
İnce çeperli iğkabahar odunu traheidlerinden, kalın çeperli dar lümenli ve daha zayıfdestekleme görevi yapan yaz odunu traheidlerine geçiş ladinde belirsiz ve yavaştır.

Doğu ladındı, boyuna traheidlerin iç yüzlerinde, oldukça belirgin çıkıntılar meydana gelirerek hücre çeperinin iç kısmına çentikli bir görünüm varden ve daha çok yaz odundan görülen spiral kalınlaşma lar görülmektedir.

Iğneyapraklı ağaçlarda genel ortalama trahei uzunluğu 2.5 - 4 mm arasında değişmekle ve ladin yerli ağaç türlerimiz arasında en uzun traheide sahip türlerin başında gelmektedir. Önemli iğneyapraklı ağaçlarda traheid uzunluklarına sırt minimal ve maksimal değerler aşağıda verilmiştir (Berkel, 1970).

Traheid Uzunlukları (mm)

<table>
<thead>
<tr>
<th>Ladin</th>
<th>1.1 — 6.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çam</td>
<td>1.3 — 4.5</td>
</tr>
<tr>
<td>Göknar</td>
<td>1.6 — 5.7</td>
</tr>
<tr>
<td>Melez</td>
<td>1.4 — 6.2</td>
</tr>
<tr>
<td>Douglasie</td>
<td>1.0 — 7.0 ve daha fazla</td>
</tr>
</tbody>
</table>

Çizelge 2. Doğu ladıninde boyuna traheid boyutları

<table>
<thead>
<tr>
<th>İkinci Odunu</th>
<th>Yaz Odunu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traheid Uzunluğu (mm)</td>
<td>2.39</td>
</tr>
<tr>
<td>Çeşit kalınlığı x 2 (μ)</td>
<td>İşınsal 6.99</td>
</tr>
<tr>
<td></td>
<td>Teğetsel 8.03</td>
</tr>
<tr>
<td>Lumen Çapı (μ)</td>
<td>İşınsal 23.86</td>
</tr>
<tr>
<td></td>
<td>Teğetsel 125.74</td>
</tr>
<tr>
<td>Traheid Çapı (μ)</td>
<td>İşınsal 36.80</td>
</tr>
<tr>
<td></td>
<td>Teğetsel 33.43</td>
</tr>
</tbody>
</table>

13.2.2 Boyuna Dizi Traheidleri

13.2.3 Boyuna Salgı Hücreleri

13.2.4 Özişinleri

Doğu ladıninde özişinlerinin genel hacme katıma oranı % 8.61 dir (Topçuğlu, 1985). İğneyapraklı ağaçlarda özişinler esas ilibariyle bir sıralı fakat bazı hallerde birkaç sıralıdır.
Reçine kanallarına sahip olması nedeniyle, doğru ladını hem tek sıralı, hem de çok sıralı özışınlarına sahiptir (Şekil 2).

Şekil 2.
Tek sıralı ve çok sıralı özışınları
(Foto: M. Y. Topçuoğlu)

Bazen tek bir hücreden ve çoğu kez özışını yüksekliğinde birkaç hücreden oluşan tek sıralı özışınları, teğetel kesitte belirgin şekilde görülür. Çok sıralı özışınların sayısı, tek sıralı özışınlarından daha azdır. Çok sıralı özışınlarının ortasında recine kanalları bulunur.

13.2.5 Enine Salgı Hücreleri

Reçine kanalları etrafında ortalama 5 - 10 adet enine salgı hücresi bulunmaktadır. Bu hücreler de boyuna salgı hücreleri gibi kalın zarlıdır.
Ebine reçine kanalları ile birlikte daima çok sıralı özgüsünün ve boyutsal değerlerinin içinde bulunurlar.

Çizelge 3 Özüslüğün ait sayısal ve boyutsal değerler
(Topçuoğlu, 1985)

<table>
<thead>
<tr>
<th></th>
<th>En Uzun</th>
<th>En Kısa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tek Sıralı</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hücre Sayısı</td>
<td>29.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Yükseklik (μ)</td>
<td>502.3</td>
<td>35.5</td>
</tr>
<tr>
<td>Genişlik (μ)</td>
<td>19.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Çok Sıralı</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hücre Sayısı</td>
<td>45.6</td>
<td>19.1</td>
</tr>
<tr>
<td>Yükseklik (μ)</td>
<td>620.7</td>
<td>223.9</td>
</tr>
<tr>
<td>Genişlik (μ)</td>
<td>50.4</td>
<td>43.4</td>
</tr>
</tbody>
</table>

13.2.6 Reçine Kanalları

türe odulardan ayırmaktadır. Silindir biçimindeki boyuna reçine kanallarının dış çapları 67 - 68 μ dur. 1 cm² de 42 adet boyuna reçine kanal bulunmaktadır.

Şekil 3. Boyuna ve enine reçine kanalları
(Foto: M. Y. Topçuoğlu)

Ladin odununda, gövde eksenine dik yönde uzanan ve daima çok sıralı özışınları içinde bulunan enine reçine kanalları da bulunmaktadır. Oval bir görünümde olan bu kanallar, tüm reçine türlerde olduğu gibi, boyuna reçine kanallarından daha dardır.

13.3 Ladînde Odun Kusurları

13.3.1 Basınç Odunu

Basınç odunu işneyapralı ağaçların gövde ve dallardında meydana gelen anormal bir odun teşekkülüdür. Devamlı rüzgar etkisi altında bir tarafta doğru eğilmiş bulunan ağaç gövdelerinde, rüzgârın geldiği yönün aksi tarafında ve dalların alt kısımlarında oluşur.
Diğer cinslerde olduğu gibi, doğu ladininde de basınç odunu, çevresindeki odunundan daha koyu rengi gümüşü ile kendiini belli eder. Bu odunun oluşturduğu yerlerde yıllık halkalar daha genişir. Enine kesitte basınç odunu hücreleri daireye yakın bir biçimde görürler. Hücreler arasında pek çok hücreler arası boşluklar, işnsal kesitte ise hücre çeperlerinde çatılar görülür (Topçuoğlu, 1985).

Basınç odununda yüzde olarak lignin oranını normal odundan çok daha yüksektir. Normal ladin odununda lignin oranı yaklaşık % 28 iken, basınç odununda % 30 - 35'e yükselmesidir. Odun poliosları normal odunda % 24.3, basınç odununda % 27.3 dür. Selüloz bakımından basınç odunu önemli bir kusur olarak ortaya çıkmaktadır ve normal ladin odundaki % 41.5’lik selüloz oranı, basınç odununda % 27.3’e inmektedir. Trabeel boylamanın da daha kısa olması nedeniyle, basınç odunu kağıt ve selüloz endüstrisinde düşük değerdir.

Normal odunda liflere paralel yönde çalışma % 0.1 - 0.2, basınç odununda taze halde hava kurusu hale geçişte çalışma ise % 0.3 - 2.5 arasında bulunmaktadır. Basınç odununda her çeşit direnç ve özellikle çekme direnç değerleri normale odunun altındaadır. Ayrıca, bu odun daha gevşek, çatlama, eğilme ve çarpımlar daha çok görülür.

13.3.2 Gövde Eğriliği

Ladin istisnai haller dışında düzgün gövde yapan bir ağac türüdür. Gençlikten itibaren düzgün bir düz gelişir.

13.3.3 Konik Gövde Oluşumu

Ağac türülerimiz arasında gövde dolgunluğu bakımından en başta göknar gelmekte, bunu sırası ile ladin ve çam takip etmektedir.

13.3.4 Spiral Lifilik

Spiral lifilik ağac malzemesi en önemli kusurlardan birisidir. Bu olayda lifler ağac gövdesi eksenine paralel olmayıp, bu eksenle küçük 226
veya büyük bir açı yaparak, gövde etrafında dolaşırlar. Spiral lifilik hali
inde ladinde lifler gençlikte hemen sola yönelmekle, ağaç yaşı
ilerledikçe gövde eksenine paralel bir hal almakta, daha sonra yavaş
yavaş sağa doğru yönelmektedir.

13.3.5 Budaklılık

Dalların gelişekte olan gövde içerisinde kalarak meydana getir-
dikleri budaklılık, çürüldükten sonra en önemli bir kusur sayılmaktadır. İğneyapraklı ağaçlarda, ölen ve mantarlar tarafından tahrip edilen dalların kopduğu yerde, gövde odununda bir dal çıkıntısı kalmaktadır. Kuru ve ölü olan bu dal çıkıntısının her yıl artan yapış gövde içerisine gö-
mülmesi, ığneyapraklı ağaçlarda, daha sakınca olan "düsen bu-
dak'ların meydana gelmesine neden olur. Koparak düşen dalın bırak-
tığı yara, çevresindeki gövdenin kambium tabakasının meydana getir-
diği yara dokuşu ile kapatılır.

Çeşitli ağaç türlerinde budak yaraşının yara dokuşu ile kapan-
ma hızı değişiktir. Aşağıda ladin ve karşılaştırma bakımından diğer
önemleri bazı ığneyapraklı ağaç türlerinde yara kapanma hızları veril-
miştir.

<table>
<thead>
<tr>
<th>Budak Yaraşının Kapanma Hızı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yavaş</td>
</tr>
<tr>
<td>Orta Derecede</td>
</tr>
<tr>
<td>Çabuk</td>
</tr>
</tbody>
</table>

13.4 Ladin Odunun Fiziksel Özellikleri

13.4.1 Odun - Su İlişkileri

13.4.1.1 Odunda Denge Rutubeti (Higroskopik Denge)
Odun higroskopik bir maddedir ve belirli bir denge meydana ge-
linceye kadar çevresindeki atmosferden su buharı alma ve bunu iç yü-
zeyle kondense etme kabiliyetindedir. Lif doygunluğu tutubet de-

227
recesi olan % 20 - 40 ve ortalama % 30 rutubet derecesinin altındaki rutubetlerde odunun rutubeti ile çevresindeki havanın rutubeti arasında belirli bir denge meydana gelmektedir.

Bu çalışmaya göre ladininde denge rutubeti değerleri çeşitli bölgelere göre şöyledir;

<table>
<thead>
<tr>
<th>Bölgeler</th>
<th>Kapalı Yerde</th>
<th>Açıkta</th>
</tr>
</thead>
<tbody>
<tr>
<td>İzmir</td>
<td>10-15</td>
<td>9-17</td>
</tr>
<tr>
<td>Ankara</td>
<td>10-13</td>
<td>9-18</td>
</tr>
<tr>
<td>Bolu</td>
<td>8-13</td>
<td>12-18</td>
</tr>
<tr>
<td>İstanbul</td>
<td>10-12</td>
<td>13-21</td>
</tr>
<tr>
<td>Antalya</td>
<td>9-13</td>
<td>6-15</td>
</tr>
<tr>
<td>Diyarbakır</td>
<td>6-14</td>
<td>6-15</td>
</tr>
<tr>
<td>Erzurum</td>
<td>6-13</td>
<td>8-18</td>
</tr>
<tr>
<td>Trabzon</td>
<td>12-16</td>
<td>12-16</td>
</tr>
</tbody>
</table>

13.4.1.2 Odunun Genişleme ve Daralması

Odunsu hücre çeperi, tam kuru hal olan % 0 ile, lif doygunluğu rutubet derecesi olan ortalama % 30 rutubet arasında bünyesine su almakla hacmini genişletmekte, bünyesinden su kaybetmekte hacmini daraltmaktadır. Daralma ve genişleme miktarları odunun her yönünün...
de aynı değildir. En büyük değişme yıllık halkalar teğet yönde meydane gelmektedir.

Ladin odununda lif doygunluğu rutubet miktarı % 32 bulunmuştur ve bu değer % 30 - 34 arasında değişmektedir (Eraslan, 1947). Bu rutubet miktarları ile firn kurusu hal arasında ladin odununda çeşitli yönlerde hacim daralma değerleri aynı araştırmacıya göre şöyledir:

<table>
<thead>
<tr>
<th>Lifler Paralel Yönde %</th>
<th>Radial Yönde %</th>
<th>Teget Yönde %</th>
<th>Hacim Daralma %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>3.8</td>
<td>7.4</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Ladin odununda, lif doygunluğu noktasında alındıri rutubetlerde hacmen ve diğer yönlerdeki birim genişleme miktarları şöyledir (Bozkurt - Gökler, 1987).

<table>
<thead>
<tr>
<th>Tam Kuru Özgüllü Ağırlık (g/cm³)</th>
<th>% 0 - 12 rutubetler arasında % 1'lik rutubet artışının birim genişleme (% / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>Radial yönde 0.19, Teget yönde 0.37, Hacmen 0.56</td>
</tr>
</tbody>
</table>

Şekil 4.
Ladin odununda çeşitli odun rutubetlerinde lifler paralel, radial, teğet yönlerde ve hacim bekiminden genişleme yuzdelerini gösteren eğriler. (E. Mörath’a Göre)
Doğu ladini odunu, diğer igne yapraklı ağaçların odunlarında olduğu gibi, yıllık halkaların daralmasıyla aşırılaşmakta ve bunun sonucu olarak da hacim daralma yüzdesi çağrılmaktadır (Eraslan, 1947).

<table>
<thead>
<tr>
<th>Ortalama Yıllık Hafta Genişliği (mm)</th>
<th>Tam Kuru Özgül Ağırm (g/cm³)</th>
<th>Haçim Daralma Yüzdesi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>0.317</td>
<td>9.1</td>
</tr>
<tr>
<td>3.1</td>
<td>0.382</td>
<td>11.4</td>
</tr>
<tr>
<td>2.1</td>
<td>0.408</td>
<td>11.7</td>
</tr>
<tr>
<td>1.6</td>
<td>0.410</td>
<td>12.4</td>
</tr>
<tr>
<td>0.9</td>
<td>0.425</td>
<td>12.9</td>
</tr>
<tr>
<td>0.4</td>
<td>0.446</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Kerestelerde Kuruma ile Kânlılık Kaybı:

Odunun kuruyarak daralması, yaş haldeyken biçilen topruklardan elde edilen kerestelerin zamanla kuruma sonucu, kânlılıklarında düşmelerine neden olmaktadır. Çeşitli kânlılıktaki doğru ladini kerestelerin, biçilmelerinden bir yıl sonraki kuruma miktarları aşağıda verilmiştir (Öktem- Topçuoğlu, 1982).

<table>
<thead>
<tr>
<th>Kânlılık Kademeleri (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bir Yılda</td>
</tr>
<tr>
<td>Kuruma miktarı (mm)</td>
</tr>
<tr>
<td>0.843</td>
</tr>
<tr>
<td>0.430</td>
</tr>
<tr>
<td>0.260</td>
</tr>
<tr>
<td>0.217</td>
</tr>
<tr>
<td>1.147</td>
</tr>
<tr>
<td>1.415</td>
</tr>
<tr>
<td>1.899</td>
</tr>
<tr>
<td>2.633</td>
</tr>
</tbody>
</table>

13.4.1.3 Odunun İçerisine Alabileceği En Yüksek Su Miktarı

Yaşayan bir ağaçta su miktarı, gövdenin enine kesitinde, aşağıdan yukarıya doğru, ağacın çeşitli kısımlarında mevimsel ve değişik yönlere göre farklılıklar göstermektedir (Şekil 5).

Diri odun öz oduna nazaran su miktarı bakımından daha zengindir. Ladin gövdesinde diri odunda % 130 - 160 ve olgun odunda % 30 - 40 oranında su bulunmaktadır. Doğu ladindinde bulunabilecek en yüksek su miktarı, özgül ağırlıklara göre aşağıda verilmiştir (Eraslan, 1947).
Çeşitli ağaçlarda gövde içerisindeki su miktarının öz ve kabuk arasında yatay yöndeki değişimi.
(R. Trendelenburg ve H. Mayer Weglinden)

<table>
<thead>
<tr>
<th>Sınıflar</th>
<th>Tüm Kuru Özgüzlük Agırlık (g/cm³)</th>
<th>İçerişine Alabilirceğiniz En Yüksek Su Miktarı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimum</td>
<td>0.588</td>
<td>149.7</td>
</tr>
<tr>
<td>Ortalama</td>
<td>0.405</td>
<td>179.6</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.300</td>
<td>266.6</td>
</tr>
</tbody>
</table>

Pratik bakımından önemli dolayısıyla ladin ağacında bir m³ taze odunda bulunabilecek su miktarı aşağıda verilmiştir (R. Trendelenburg, 1939).

<table>
<thead>
<tr>
<th>Ağaç Cinsel</th>
<th>1 m³ Odunun Taze Hâldeki Ağrılığı (kg/m³)</th>
<th>Hacim Yüklük Değeri (kg/m³)</th>
<th>Taze Hâldeki Beher m³ Odunda Su Miktarı (kg/m³)</th>
<th>Tüm Kuru Odun Ağrılığına Oranla Su Miktarı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LADİN</td>
<td>520</td>
<td>390</td>
<td>130</td>
<td>33</td>
</tr>
<tr>
<td>Ölgüm odun</td>
<td>980</td>
<td></td>
<td>610</td>
<td>165</td>
</tr>
<tr>
<td>Ör odun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.4.2 - Özgül Ağırlık ve Hacım Yoğunluk

Özgül ağırlık, odunun diğer özellikleri ve kullanılabileceği hakkında fikir veren önemli bir özellik olup, odunun içerisinde bulunan su miktarına göre değişiklik göstermektedir.

\[
\text{Hava Kuru Özgül Ağırlık} = \frac{\text{Hava Kuru Ağırlık}}{\text{Hava Kuru Hacım}}
\]

\[
\text{Tam Kuru Özgül Ağırlık} = \frac{\text{Tam Kuru Ağırlık}}{\text{Tam Kuru Hacım}}
\]

Odunda hacim yoğunluk değeri ise, odunun tam kuru ağırlığının, lif doyunuğun rutubet derecesinin üstündeki hacmine bölünmesi ile bulunur. Bir diğer deyişle, hacim yoğunluk değeri, yaş bir odunun bir \(m^3 \) ü içeresindeki susuz, saf odun hammaddesini kg olarak veren bir değerdir.

Doğu ladını odununun (Eraslan, 1947) ve karşilaştırmayı sağlamak üzere diğer uazı önemli ağac cinslerimiz odunlarının (Berkel, 1970) özgül ağırlıkları ve hacim yoğunluk değerleri **Çizelge 4**'de verilmiştir.

Çizelge 4 - Doğu ladının ve bazı önemli ağac cinslerinde özgül ağırlık ve hacim yoğunluk değerleri.

<table>
<thead>
<tr>
<th>Ağac Cinsleri</th>
<th>Tam Kuru Özgül Ağırlık (g/cm(^3))</th>
<th>Ortalama Değer</th>
<th>Sınır Değerleri</th>
<th>Ortalama Hacım Yoğunluk Değeri (kg/m(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOĞU LADINI</td>
<td>0.406</td>
<td>0.30 - 0.59</td>
<td>359.0</td>
<td></td>
</tr>
<tr>
<td>Sarçam</td>
<td>0.496</td>
<td>0.34 - 0.83</td>
<td>426.0</td>
<td></td>
</tr>
<tr>
<td>Kuzlacam</td>
<td>0.53</td>
<td>0.39 - 0.69</td>
<td>478.0</td>
<td></td>
</tr>
<tr>
<td>Doğu Kayın</td>
<td>0.63</td>
<td>0.57 - 0.66</td>
<td>531.0</td>
<td></td>
</tr>
</tbody>
</table>

232.
Pratikte sağladığı yararlar nedeniyle, doğu ladının hava kurusu (% 15 rutubet derecesindeki) özgül ağırlığının bilinmesinde yarar vardır. Eraslan'ın (1947) çalışmaları göre, bu değerler aşağıdaki gibidir:

% 15 Hava Kurusu Özgül Ağırlık (g/cm³)

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Ortalama</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.331</td>
<td>0.436</td>
<td>0.619</td>
</tr>
</tbody>
</table>

Ladinde yıllık halka genişledikçe özgül ağırlık ve hacim yoğunluk değeri düzenli bir şekilde azalmaktadır (Eraslan, 1947) (Şekil 6 ve 7).

13.4.3 Ladin Odunun Termik Özellikleri

13.4.3.1 Termik Genleşme

Bütün katı cisimler gibi, odun ısı etkisi ile boyutlarını değiştirir. Çeşitli ağaç türleri odunlarında termik genleşme katsayısı değerleri şöyledir:

<table>
<thead>
<tr>
<th>Liflere Paralel Yönde</th>
<th>Liflere Dik Yönde</th>
<th>Yıllık Halkalara Teğet Yönde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000025 - 0.000011</td>
<td>0.000015 - 0.000035</td>
<td>0.000024 - 0.000075</td>
</tr>
</tbody>
</table>

Yukarıda görüldüğü gibi, ortalama olarak radial yöndeki termik genleşme katsayısı, liflere paralel yöndeki katsayının altı katı, yıllık halkalara teğet yöndeki termik genleşme katsayısı ise liflere paralel yöndeki katsayının dokuz katıdır. Termik genleşme değeri, \((\alpha_w) \) çok küçük olduğundan, ladin odunu ve karşılaştırma için önemli bazı ağaç türleri odunlarına ilişkin termik genleşme değerleri \(10^4 \) ile çarpılarak Çizelge 5'de verilmiştir.

13.4.3.2 Isı İletkenliği

Odun, gerek kristalit bünyedeki miselyapısı ve gerekse hücre yapısı dolaysıyla içerisinde fazla miktarla hava boşluğu bulunduğun-
Şekil 6. Yıllık halka genişliği ile tam kuru özgülgü ağırlık arasındaki ilişki

Şekil 7. Yıllık halka genişliği ile hacim yoğunluk değeri arasındaki ilişki
Çizelge 5. Ladin ve çeşitli ağaç cinsleri odunlarında termik genleşme değerleri

<table>
<thead>
<tr>
<th>Ağaç Cinsi</th>
<th>Termik Genleşme Değeri ($n_w \times 10^4$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lıflere Paralel Yönde</td>
</tr>
<tr>
<td>LADİN</td>
<td>5.41</td>
</tr>
<tr>
<td>Göknar</td>
<td>3.71</td>
</tr>
<tr>
<td>Veymut Çamı</td>
<td>3.65</td>
</tr>
<tr>
<td>Meşe</td>
<td>4.92</td>
</tr>
<tr>
<td>Ceviz</td>
<td>6.55</td>
</tr>
</tbody>
</table>

dan ısı iletkenliği fena bir malzemedir. Bu nedenle, iyi bir ısı izalatörü olarak muhtelif yerlerde (alet sapı, fiş, yer döşemesi vb.) kullanılmaktadır. Termik bakımdan, küp biçimindeki 1 m3 lük bir cismin, aralarında 1$^\circ$C ısı farkı bulunan iki karşılıklı yüzeyin birisinden diğerine 1 saatlik zaman içerisinde geçen ve Kkal cinsinden ölçülen ısı miktarına, ısı iletkenliği katsayısı denilir ve Kkal/mh1$^\circ$C olarak ifade edilir. Ladinde ve karşılaştırma için bazı ağaç türlerinde ısı iletkenliği katsayıları Çizelge 6'da verilmiştir.

Çizelge 6. Ladin ve bazı önemli ağaç cinsleri odunlarında çeşitli yönlerde ısı iletkenliği katsayıları (E. Griffiths ve W. C. Kaye'e göre)

<table>
<thead>
<tr>
<th>Ağaç Cinsi</th>
<th>Özgül Ağırlık (g/cm3)</th>
<th>Su Miktarı (%)</th>
<th>20 ısı derecesinde ortalama ısı iletkenliği katsayısı (Kkal/mh1$^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lıflere paralel</td>
</tr>
<tr>
<td>LADİN</td>
<td>0.41</td>
<td>16</td>
<td>0.1908</td>
</tr>
<tr>
<td>Dişbudak</td>
<td>0.74</td>
<td>15</td>
<td>0.2628</td>
</tr>
<tr>
<td>Ceviz</td>
<td>0.65</td>
<td>12</td>
<td>0.2844</td>
</tr>
</tbody>
</table>

13.4.4 Ladin Odununun Akustik Özellikleri

Ağaç malzeme ses dalgalarını yayma ve boğma özellikleri bakımından diğer malzemeye nazaran üstün bulunmakta, bu nedenle mü
Zik aletleri yapımında, konser ve tiyatro salonlarında kullanılmaktadır.

Sesin bir saniyede aldığı yola "Sesin Yayılma Hızı" denir. Ağac malzemenin akustik bakımdan en önemli karakteristiği, ağırlığının az oluşuna karşılık, içerisinde sesin yayılma hızının yüksek bulunduğu dur. Ladin ile bazı önemli ağaç türleri odun ve malzeme‌de ses yayılma hızları Çizelge 7'de verilmiştir.

Çizelge 7. Ses Yayılma Hızı

<table>
<thead>
<tr>
<th>Ağac Cinsleri ve Diğer Malzeme</th>
<th>Ortalama Özgül Ağırlık (g/cm³)</th>
<th>Elastliklik Modülü (E/MPa)</th>
<th>Ses Yayılma Hızı (Cı (m/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladin</td>
<td>0.47</td>
<td>11000</td>
<td>4790</td>
</tr>
<tr>
<td>Çam</td>
<td>0.52</td>
<td>120 000</td>
<td>4760</td>
</tr>
<tr>
<td>Kayın</td>
<td>0.7</td>
<td>160 000</td>
<td>4638</td>
</tr>
<tr>
<td>Kavak</td>
<td>0.45</td>
<td>94 000</td>
<td>3826</td>
</tr>
<tr>
<td>Demir</td>
<td>7.85</td>
<td>—</td>
<td>5 000</td>
</tr>
<tr>
<td>Cam</td>
<td>7.1</td>
<td>—</td>
<td>5 100 - 6 000</td>
</tr>
<tr>
<td>Mantar</td>
<td>2.5</td>
<td>—</td>
<td>430 - 530</td>
</tr>
</tbody>
</table>

Müzik aletleri yapımında kullanılan ağaç malzemesi "Rozenans" ağaç malzemesi denir. Yaylı müzik aletlerinde çoğunlukla ladin ve ağaç ağaç kullanılır. Bu amaçla kullanılacak ladin 1. sınıf, yıllık halkaları dar (1-2 mm) ve genişlikleri yeşik olmalıdır. Birbirini takip eden yıllık halkalaraki genişlik farkı 0.5 mm yi aşmamalıdır. Bundan başka, malzeme bufaksız olmalı, spiral liflilik ve basınç odunu bulunmamalıdır. Hava kurusu özgül ağırlığı 0.37 - 0.43 g/cm³ arasında, yıllık halka içerisindeki yaz odunun oranı mümkün mertebe düşük ve en fazla % 20 - 25 olmalıdır. Bu malzeme sunu' şekli ile ortalama % 6 rutubet derecesine kadar kurutulmalıdır. Yüksek dağarda bazı yetiştirme muhitterleri bu amaçla uygun malzemeye vermektedir (Beikel, 1970).
13.5 Ladin Odununun Kimyasal Özellikleri

13.5.1 Elementer Bileşim

Odun, ağırlık olarak karbon, hidrojen, oksijen ve bir kism azot ile kült içerisindeki maddelerden (Na, K, Ca, P, Mg vs.) meydana gelmektedir. Bu elementlerin yüzde miktari ağaç türlerinde ve aynı ağaçın muhtelif kısımlarında çok az miktarda değişiklik göstermektedir. Ladin ve bazı önemli ağaç cinslerinde kimyasal elementlerin yüzde oranları Çizelge 8'de verilmüşdür.

Çizelge 8 Çeşitli ağaç cinsleri odunları içerisinde kimyasal elementlerin % oranları
(G. Lange ve A. Sergejewa, 1959)

<table>
<thead>
<tr>
<th>Ağaç Cinsleri</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladin</td>
<td>51.39</td>
<td>6.11</td>
<td>41.56</td>
<td>0.94</td>
</tr>
<tr>
<td>Çam</td>
<td>51.39</td>
<td>6.11</td>
<td>41.56</td>
<td>0.94</td>
</tr>
<tr>
<td>Meşe</td>
<td>50.64</td>
<td>6.23</td>
<td>41.65</td>
<td>1.28</td>
</tr>
<tr>
<td>Kayın</td>
<td>50.89</td>
<td>5.07</td>
<td>42.11</td>
<td>0.95</td>
</tr>
</tbody>
</table>

13.5.2 Esas Bileşikler

Ladinde, odunun esas bileşikleri olan, selüloz, odun polyosları ve ligninin kuru odun ağırlığındaki iştirak oranları Şekil 8'de gösterilmiştir.

Şekil 8. Ladin odununun esas bileşikleri: Selüloz, Odun polyosları (Hemiselülozlar) ve Ligninin kuru odun ağırlığındaki yüzde iştirak oranları (Trendelenburg/Mayer-Megelin'den)
Ülkemizde, doğu ladini üzerinde yapılan kimyasal analizlerin sonuçları (Bostancı, 1979) Çizelge 9'da verilmiştir.

13.6 Ladin Odununun Mekanik Özellikleri

13.6.1 Elastiklik Özellikleri

Elastiklik, kat bir hammaddede düşük gerilmelerde meydana gelen deformasyonların, yük kaldırdıktan sonra tekrar tamamen elde edilmişsiyle tarif edilir. Ağaç malzemenin elastik deformasyon kabiliyeti oldukça yüksektir. Ladinde elastiklik modülü ile özgül ağırlık arasında doğrusal bir ilişki bulunmaktadır (Kollmann and Krech, 1960) (Şekil 9).

![Elastiklik Modülü ve Özgül Ağırlık](image)

Şekil 9. Ladinde liflere paralel yönde elastiklik modülü ve özgül ağırlıkın etkisi

13.6.2 Direnç Özellikleri

13.6.2.1 Basınç Direnci

Basınç direnci ağaç ve ağaçtan yapılmış malzemelerde, el sanatları ve sanayide kullanımlarda çok önemli bir direnç türüdür. Eraslan (1947) tarafından yapılan çalışmalarda, doğu ladininin basınç...
Çizelge 9. Doğu ladini odununun kimyasal analizleri

<table>
<thead>
<tr>
<th>Yapılan Analiz</th>
<th>Çap</th>
<th>Ortalama Değer %</th>
<th>Minimum %</th>
<th>Maksimum %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicak suda çözünürlük</td>
<td>10</td>
<td>1.44</td>
<td>1.19</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.50</td>
<td>1.09</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>1.54</td>
<td>1.06</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.76</td>
<td>1.14</td>
<td>2.42</td>
</tr>
<tr>
<td>%1 NaOH'de çözünürlük</td>
<td>10</td>
<td>11.00</td>
<td>9.67</td>
<td>12.99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>12.39</td>
<td>11.42</td>
<td>14.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>8.93</td>
<td>6.65</td>
<td>10.72</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>9.41</td>
<td>7.51</td>
<td>10.72</td>
</tr>
<tr>
<td>Eterde çözünürlük</td>
<td>10</td>
<td>0.66</td>
<td>0.38</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.48</td>
<td>0.21</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.77</td>
<td>0.38</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.38</td>
<td>1.17</td>
<td>1.80</td>
</tr>
<tr>
<td>Akol/Benzende çözünürlük</td>
<td>10</td>
<td>0.74</td>
<td>0.37</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.01</td>
<td>0.40</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.82</td>
<td>0.31</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.31</td>
<td>0.49</td>
<td>2.45</td>
</tr>
<tr>
<td>Holoselüloz</td>
<td>10</td>
<td>74.34</td>
<td>72.24</td>
<td>74.82</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>74.26</td>
<td>71.15</td>
<td>75.20</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>74.05</td>
<td>72.22</td>
<td>75.59</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>73.01</td>
<td>71.19</td>
<td>75.40</td>
</tr>
<tr>
<td>Alfa Selüloz</td>
<td>10</td>
<td>41.48</td>
<td>40.31</td>
<td>42.92</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>41.83</td>
<td>38.24</td>
<td>45.15</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>44.61</td>
<td>42.59</td>
<td>47.66</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>45.00</td>
<td>42.74</td>
<td>46.14</td>
</tr>
<tr>
<td>Lignin</td>
<td>10</td>
<td>29.16</td>
<td>27.67</td>
<td>29.83</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>26.51</td>
<td>25.59</td>
<td>28.14</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>28.59</td>
<td>26.37</td>
<td>29.96</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>28.26</td>
<td>26.87</td>
<td>29.36</td>
</tr>
<tr>
<td>Kül</td>
<td>10</td>
<td>0.41</td>
<td>0.26</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.36</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.37</td>
<td>0.31</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.39</td>
<td>0.32</td>
<td>0.46</td>
</tr>
<tr>
<td>Pentozan</td>
<td>10</td>
<td>12.98</td>
<td>12.05</td>
<td>13.98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>12.12</td>
<td>11.17</td>
<td>12.61</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>10.98</td>
<td>10.29</td>
<td>11.70</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>10.83</td>
<td>9.86</td>
<td>12.75</td>
</tr>
</tbody>
</table>
direncinin en az 200 kg/cm², ortalama 311 kg/cm², en çok 460 kg/cm² olduğu belirlenmiştir. Aynı çalışmaya göre, diğer direnç özelliklerinde olduğu gibi, özgül ağırlık arttıkça basınç direnci de artmaktadır (Şekil 10).

Şekil 10. Ladinde basınç direnci ile özgül ağırlık arasındaki ilişki

Ladinin basınç direnci hakkında daha açık fikir verebilmek amacıyla bu ağaç cinsinin ve önemli bazı diğer cinslerin % 12 ve % 30 odun rulubelindeki basınç direncleri Çizelge 10'da verilmiştir (Berkel 1970).
Çizelge 10. Ladinin ve bazı ağaç cinsleri odunlarının liflere paralel ve dik yönlerde basınç dirençleri

<table>
<thead>
<tr>
<th>Ağaç Cinsleri</th>
<th>Basınç Direnci (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liflere Paralel Yönde</td>
</tr>
<tr>
<td></td>
<td>(u = % 12)</td>
</tr>
<tr>
<td>Ladin</td>
<td>500</td>
</tr>
<tr>
<td>Çam</td>
<td>550</td>
</tr>
<tr>
<td>Kayın</td>
<td>620</td>
</tr>
<tr>
<td>Meşe</td>
<td>650</td>
</tr>
<tr>
<td>Kavak</td>
<td>345</td>
</tr>
</tbody>
</table>

Şekil 11. Ladinde rutubet miktarının basınç direnci üzerine etkisi
(Kollmann ve Cote, 1968)

Gerek Çizelge 10’un ve gerekse Şekil 11’in incelenmesiyle görüleceği üzere, lil doygunluğu noktasındaki rutubet dereceleri odunun basınç direnci, odun kuruduça artmaktadır.
13.6.2.2 Çekme Direnci

Birbirinin aksi yönerde tesir eden ve lifleri koparmaya çalışan iki kuvvete karşı ağaç malzemenin gösterdiği karşı koyma olan çekme direnci liflere paralel ve liflere dik olmak üzere iki çeşittir.

Liflere paralel çekme direnci ağaç malzemede en yüksek direnç değeri vermekte ve hava kuru halinde ortalama çekilme direnci değerleri 600 ile 2000 kg/cm² arasında bulunmaktadır. Bu değer igneyapıklarda yaklaşık 1000 kg/cm² dir. Ağaç malzemenin liflere paralel yöndeki çekme direncinin tam kuru haldeki özgül ağırliğe oranlanması ile elde olunan değere "kopma uzunluğu" (M) denir. Ladinin ve karşılaştırma için diğer inşaat malzemelerinin kopma uzunluğu değerleri aşağıda verilmiştir:

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladin</td>
<td>19.80</td>
</tr>
<tr>
<td>Kayın</td>
<td>13.70</td>
</tr>
<tr>
<td>Preslenmiş kayın</td>
<td>19.30</td>
</tr>
<tr>
<td>İnşaat çeliği</td>
<td>5.40</td>
</tr>
</tbody>
</table>

Liflere dik yönde çekme direnci, liflere paralel yönde çekme direncine nazaran çok düşktür. Örneğin; liflere paralel çekme direncinin 10.16 kg/cm² olduğu bir odunda liflere dik çekme direnci ancak 15 kp/cm² dir. Ancak, çatlakların da liflere dik yönde çekme direncini çok etkilediğini unutulmamak lazımdır. Ladinde ve bazı önemli ağaç cinslerinde çekme direnci değerleri Çizelge 11'de verilmiştir.
Çizelge 11. Ladinde ve bazı ağaç cinslerinde çekme dirençleri

(Berkel, 1970)

<table>
<thead>
<tr>
<th>Ağaç Cinsleri</th>
<th>Çekme Direnci (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liffere Paralel Yönde</td>
</tr>
<tr>
<td></td>
<td>u = % 12</td>
</tr>
<tr>
<td>LADİN</td>
<td>900</td>
</tr>
<tr>
<td>Çam</td>
<td>1190</td>
</tr>
<tr>
<td>Kayın</td>
<td>1350</td>
</tr>
<tr>
<td>Meşe</td>
<td>300</td>
</tr>
<tr>
<td>Kavak</td>
<td>770</td>
</tr>
</tbody>
</table>

13.6.2.3 Eğilme Direnci

Ağaç yapı malzemesinde eğilme direncinin büyük önemi vardır. Doğu ladinin % 15 rutubetteki eğilme direnci minimum 410 kg/cm², ortalama 690 kg/cm² dir (Eraslan, 1947).

13.6.2.4 Şok Direnci

Dinamik eğilme de denilen şok direnci, ağaç malzemenin şok şeklinde kuvvetlere karşı gösterdiği dirençtir. Eraslan (1947) tarafından yapılan çalışmalararda doğu ladini için bulunan değerler, minimum 0.12 kg/cm², ortalama 0.40 kg/cm² ve en çok 0.80 kg/cm² dir. Karşılaştırmak için ülkemiz ağaç türlerine ait değerler Çizelge 12'de verilmiştir.
Çizelge 12. Doğu ladıninde ve diğer bazı önemli Türkiye ağaçlarında dinamik eğilme direnci ve dinamik kalite değeri

<table>
<thead>
<tr>
<th>Ağac Türü</th>
<th>Hava Kurusu Özgüli Ağırlık r_{12} (gr/cm²)</th>
<th>Dinamik Eğilme Dir. $u = % 11...12$ (kgm/cm²)</th>
<th>Dinamik Kalite Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea orientalis</td>
<td>0.44</td>
<td>0.40</td>
<td>2.4 Erdalan</td>
</tr>
<tr>
<td>Abies bornmülleriana</td>
<td>0.43</td>
<td>0.36</td>
<td>2.0 Berkel</td>
</tr>
<tr>
<td>Cedrus libani</td>
<td>0.52</td>
<td>0.45</td>
<td>1.7 Berkel</td>
</tr>
<tr>
<td>Pinus brutia</td>
<td>0.57</td>
<td>0.26</td>
<td>0.8 Berkel</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>0.56</td>
<td>0.56</td>
<td>1.7 Gökler</td>
</tr>
<tr>
<td>Fagus orientalis</td>
<td>0.66</td>
<td>0.92</td>
<td>2.1 Berkel</td>
</tr>
</tbody>
</table>

13.6.2.5 Makaslama Direnci

Makaslama direncinden ağaç malzemede yan yana veya birbir ile kaynaşmış iki düzlemi aksi yönerde kaydırarak birbirinden ayırmaya çalışan kuvvetlere gösterilen karşı koyma anlaşılmaktadır. Ladınde ve bazı önemli ağaçlarda makaslama direnci değerleri Çizelge 13’dede verilmiştir (Berkel, 1970).

Çizelge 13. Ladın ve bazı önemli ağaçlarda makaslama direnci değerleri

<table>
<thead>
<tr>
<th>Ağac Cinsi</th>
<th>Makaslama Direnci $u = % 12$ (kg/cm²)</th>
<th>$u = % 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LADİN</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>Çam</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Kayın</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Meşe</td>
<td>110</td>
<td>75</td>
</tr>
</tbody>
</table>
13.6.2.6 Sertlik

Ağacın belirli maksatlar için teknik bakımdan kullanışılığı ve işleyi- me kabiliyeti sertliği ile ilgili bulunmaktadır. Ağaçlar, odunlarının sert- liklerine göre; çok yumuşak, yumuşak, biraz sert, sert ve çok sert, taş gibi sert ve kemik gibi sert olmak üzere sekiz gruba ayrı- diğinde,ladın “yumuşak” sertlikte ağaclar grubunda yer almaktadır.

Ülkemizde doğu ladini üzerinde yapılan araştırmalarda, havan ku- russe odunun (u = % 12) lifere paralel ve dikk yöndeki Brinell Sertlik değ- gerleri aşağıdaki gibi bulunmuştur (Berkel, 1960).

<table>
<thead>
<tr>
<th>Brinell Sertlik (kg/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifere paralel</td>
</tr>
<tr>
<td>Minimal</td>
</tr>
<tr>
<td>Ortalama</td>
</tr>
<tr>
<td>Maksimal</td>
</tr>
<tr>
<td>Lifere dik</td>
</tr>
<tr>
<td>Minimal</td>
</tr>
<tr>
<td>Ortalama</td>
</tr>
<tr>
<td>Maksimal</td>
</tr>
</tbody>
</table>

Aynı araştırmaya göre, doğu ladiniinde yıllık halkalar daralıca odun sertleşmektedir:

<table>
<thead>
<tr>
<th>Ortalama Yıllık Halka Genişliği (mm)</th>
<th>Ortalama Brinell Sertlik (kg/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4.75</td>
</tr>
<tr>
<td>2.5</td>
<td>4.23</td>
</tr>
<tr>
<td>3.5</td>
<td>3.75</td>
</tr>
<tr>
<td>4.5</td>
<td>3.36</td>
</tr>
<tr>
<td>5.5</td>
<td>3.15</td>
</tr>
<tr>
<td>6.5</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Bu ilişkiye paralel olarak, tam kuru özgül ağırlığın artması ile lifle- re paralel yönde Brinell Sertlik Değeri artmaktadır (Şekil 12).

KAYNAKÇA

TRENDELENBURG, R. 1939. Das Holz als Rohstoff. München / BERLİN.

TRENDELENBURG, R., MAYER - WEGELIN, H. 1955 Das Holz als Rohstoff. 2. Auglage
A. Pamir ERTEN

14

doğu ladini
odununun
korunması

Doğu Ladini Odununun Pilot Tesiste Emprenye Edilmesi
14 DOĞU LADİNİ ODUNUNUN KORUNMASI

Doğu Ladini, Doğu Karadeniz bölgesinde doğal olarak yetişen bir ağaç türümdür. Yörenin iklim şartlarına göre ladin odun empreyenez kullanıldığı zaman kısa sürede çürümektedir. Genel olarak ladin odununda meydana gelen zararlar ve alınacak önlemleri iki kısımda toplamak mümkündür.

1- Mavirenk oluşumu ve alınacak önlemler
2- Çürüm ve ladin odununun empreyenez

14.1 Mavirenk Oluşumu ve Alınacak Önlemler

Mavirenk oluşumunun renk ve görünüm kısıdırudur. Odunun direnç özelliklerini önem derecede etkilemez (Berkel 1954; Berkel et al 1965; Erten, Önal, 1985; İlhan et al 1976).

Mavirenk oluşumuna karşı alınacak en etkili önlemler ormanda kesimlerin sonbahar ve kışın yapılması kesimden sonra tomrukların
ormandan hemen çıkarılması, biçilmesi, kerestelerin havadadır bir şekilde istilfenmesidir. Bu mümkün olmadığı zaman odunun doğal halini bozmayan emprenye maddeleri ile kısa süreli dalırma yöntemi ile 15 sanyo süreyle emprenye edilmelidirler. Emprenyede maddesi olarak sodyum pentaklorofenat + boraks'ın % 1.5 konsantrasyondaki çözeltisi mavirenk mantarlarına karşı etkili olmaktadır (Berkel et al 1965; İlhan et al 1976). Emprenyeden sonra keresteler öz odundan eide edilmiş çitaları havadadır bir şekilde istilfenmelidir.

14.2 Çürüme ve Ladin Odununun Emprenyesi

Ladinin dallırmak yöntemi ile emprenye edilmesinde iyi bir sonuç alınması mümkün değildir. Ancak yeni kesilmiş malzemenin basit difüzyon yöntemi ile daha iyi emprenye edilmesi mümkün olabilir. Nitekim yeni kesilmiş ladin cit kazıklarında adı geçen emprenye yöntemi ile % 3 lük Wolmanit-CB'den 2.6 kg/m³ emprenye maddesinin emdirilmesi mümkün olmuştur (Küçük, 1980). Basit difüzyon yöntemi ile emprenye maddesinin konsantrasyonunu % 10'a yükselerek ladin odununa daha fazla emprenye maddesini emdirmek mümkün olabilecektir.

KAYNAKÇA

Mustafa AKYÜZ

15 Doğu ladini odununun kullanım yerleri

Foto: H. Atasoy

Doğu Ladini Odunundan imal Edilmiş Mahalli Ev Gereçleri
Yıvık, Kürek, Kova v.b.

Foto: H. Atasoy
15 DOĞU LADİNİ ODUNUNUN KULLANIM YERLERİ

Doğu Ladini (Picea orientalis (L.) Link) Doğu Karadeniz Bölgesinde geniş sahalara yayılmakta olup, gerek doğrudan ve gereksepaque değişikliği ile çok çeşitli kullanma alanına sahiptir. Özellikle odun hamuru ve selüloz istihsalinde büyük bir önemi vardır (Akgül, 1970).

15.1 Odunun Bünyesini Değiştiren Kullanım Yerleri
Mihaniği Odun Hamurunun Elde Edilmesinde Kullanılması
Bu amaçla kullanılan Ladinden elde edilen hamur içerisinde Lignin ve diğer maddelerin bulunmasından dolayı sert ve gevşektir. Güneş ışığı altında hemen sararır. Bu nedenle yalnız başına kağıt yapımda elverişli değildir. Ancak muayyen oranelarda selüloz ile karıştırarak muhtelif kalitelerde kağıtlar elde edilir. Odun hamuru ambalaj kağıtlarında % 40, kartonlarda % 60, gazete kağıtlarında % 70 nisbetinde kullanılmaktadır (Eraslan, 1947).

Odun hamuru üretiminde Ladın, uzun lifleri, mukavim karekriterleri, yumuşaklığı, uniformaları, verimi gibi üstün özelliklerinden ötürü de rakipsizdir (Bostancı, 1979).

Selüloz Elde Edilmesinde Kullanılması

15.2 Odunun Bünyesini Değiştirmeyen Kullanım Yerleri
Pedavra (Hartama) İmalinde Kullanılması
Eskiden Doğu Karadeniz bölgesinde dam örtülüüğü olarak kullanılan pedavra, Ladinden elde edilmekte idi. Bu imalat çakı olarak ger-
çekleşmekte ve büyük kereste kayıplarına sebebiyet vermektede id.

"Şöyleki; 82 - 123 cm. boyunda 4 - 14 genişlikte ve 0,1 - 2 cm. kalınlık larda 2592 adet pedavra elde etmek için 21.329 m3 dikili gövde hacminde ladin kullanılmakta ve elde edilen bu pedavraların hacmi 1.905 m3 olup, 19.424 m3 ise zayıf olmaktadır. Görüldüğü gibi zayiat oranı %91 dir (Gürsü, 1966).

Alınan tedbirler ve halkın ekonomik durumunun kısmen iyı olması nedenleri ile kaçak olarak Ladinden imal edilmekte olan pedavradan tamamen vazgeçilmiştir.

Direk ve Kalıp Tahtası Olarak Kullanılması

Bina Yapımında Kullanılması

Doğu Ladini eskiden binalarda taban, tavan, duvar kirişleri ve çatıda kullanılmakta idi. Ancak bugün binalar genellikle betonarme yapıl SIMDİNDEN DOĞU LADINI ESKİDEN BİNALARDA TABAN, TAVAN, DUVAR KİRİŞLERİ VE ÇATIDA KULLANILMAKTA İDI. ANCAK BUGÜN BINALAR GENELLIKLE BETONARME YAPILDIĞINDAN DOĞU LADINI BİNALARIN ÇATILARININ YAPIMINDA YER YER ODALARIN TA- BAN, TAVAN DÖŞEMELERİNDE KAPı VE PENCERELERLE BUNLARIN KAŞA VE PER- VAZLARININ YAPILMASINDA, MERTİDEN KISIMLARINDA KULLANILDIĞI GIBİ LAMBI- Rİ OLARAK DA KULLANILMAKTADIR. GENELLIKLE İÇ DOĞRAMADA GENİŞ KULLANIM ALANI BULUNMUŞTUR.

Taşıt Vasıtlarında Kullanılması

Büyük gemiler ile kayık, sandal ve mavanaların iç kısımlarının bölünmesi işleri ile büyük ve küçük gemi, şileplerde şereň (direk) olarak yer yer kullanılmaktadır. Ayrıca otobüs, kamyon, vagon gibi vasıtların

Marangoz, Mobilya, Yonga levha, Kaplama Sanayinde Kullanılması

Mutlak ve kilerlerde basit mobilyalar halinde dolap, masa, sandalye, iskemle olarak kullanılmaktadır. Ayrıca kaplama, formika, kontrplak, yonga levha duralı v.b. gibi malzemele yapılan lüks mobilyaların kısmılardında kullanılmaktadır. Yumuşaklık, hafiflik ve az çalıssémsizlik özellikleri enginden dolayı bu amaçlar için tercih edilmektedir. Ayrıca yonga levha, kontrplak yapımında kullanıldığı gibi son zamanlarda kaplama sanayinde kullanılmaktadır.

Müzik Aletleri ve Nakil Kabının Yapımında Kullanılması

Müzik aletleri yapımında yapı malzemesi olarak tercih edilmektedir. Bilhassa yıllık halkaların genişliklerine göre müzik aletleri yapımında önem kazanmaktadır.

Ayrıca doğru ladininin çeşitli ambalaj kablarının yapımında kullanılmaktadır, bu kablar çeşitli malzemelemeleri konulmasında ve nakledilmesinde kullanılmaktadır. Bunlardan başlıcaları su koymaya mısıkus su kovası ve su varılı, süt ve yağ, yoğurt gibi maddeler koymaya mahsus küleklä ve yağ yapımında kullanılan yüzikler ladından de yapılmaktadır. Bu kablar eskiden yapıldığı gibi bugün de güncelliğini korumaktadır.

Tarım İşlerinde Kullanılması

Eskiden sapan ve araba oku yapımında kullanılan ladin bugün makineleşmeye geçildiğinden sapan yapımından vazgeçilmiş durum-

Kalem, Kibrit Çöpü, Kürdan ve Oyuncak Sanayiinde Kullanılması

Su Soğutma Kulelerinde Kullanılması

Su soğutma kuleleri özellikle Petrol rafinerilerinde, demir çelik fabrikalarında, hidro elektrik ve termik santrallerinde, suyi gübre, kimya ve petro kimya tesislerinde yaygın surette kullanılmaktadır. İşte bu ku- lelerin yapımında en uygun olarak şamprenye edilmiş ağac malzeme laden kullanılmaktadır.

Yakacak Olarak Kullanılması

Doğu ladini odununun hava kurusu hâlindeki kalori değeri 3947 Cal/gr'dir. Fırın kurusu kalori değeri 4443 Cal/gr., olup, yakacak olarak đa kullanılmaktadır (Berkel, 1948).
15.3 Tali Ürünleri ve Kullanılıdığı Yerler

Doğu Ladininin Kabuğu

Doğu Ladin İğne Yaprakları

İğne yapraklar eterik yağ iltixa ettiği eker yağ istilinsalinde kullanılmaktadır.

Doğu Ladinı Reçinesi

Bilhassa gövdelerde reçine akıntılarından meydana gelen katılaşmış durumda reçine birikintileri bulunmaktadır. Bu birikintiler kazınmak suretiyle toplanarak cıvanoğlu ve Ladin ormanları civarındaki köy halkı tarafından ev ilaçları yapılmışında hammadde olarak kullanılmaktadır. Ayrıca labii rechneden destilasyon suretiyle, terpentin yağı ve kolofonium denilen katı reçine elde edilmekte bu da sanayide cila, boyalarda, tababette antiseptik olarak, flaster yapılmasında kullanılır.

KAYNAKÇA

ERASLAN, İ. 1947. Doğu Ladini (Picea orientalis Link ve Carr) nin Teknik Vasıfları ve Kullanma Yerleri Hakkında Araştırmalar. OGM. Yayınları Özel Sayı No: 54.

doğu ladini
toplu kaynakça

Meryemana Doğu Ladini Araştırma
Ormanından Bir Görünüş
Ormanlık Araştırma Enstitüsü Yayınları
TOPLU KAYNAKÇA

2. ABATAY, M. 1986. Doğu Karadeniz Bölgesinde Trametes (Fomes) pinii (Thore ex. Fr.) Fr'nin Yayılışındaki Ve Zararı Üzerine Araştırmalar (Doktora tezi. henüz yayınlanmadi).

38. ATA, C. 1985. Orman Fidanlıklarında Yabancı Otlarla Kimyasal
Savaşım TÜBİTAK Doğa Bilim Dergisi Seri D 2 Cilt 9 Sayı 3: 409 - 418 s.

46. ATASOY, H. 1983. Doğu Ladinnin Tozlaşma Zamanı (Yayınlanmamış Döküman)

269

56. ATAY, İ. 1982. (b) Doğal gençleştirme yöntemleri I. (Doğal Gençleştirmeının Başarısını Etkileyen Önemli Huşuslar) İ.Ü. Or. Fak. Yayın No : 2876/306 84 s.

68. BERKEL, A. Tali Orman Ürünlerinden Ladin Kabuğu ve İstihsalı Orman Av Sayı 9 : 281 - 287 s.

78. BEŞKÖK, T. 1965. Üstün Ağaçlar, Önemleri, Seçim Esasları ve Kızılçam (Pinus brutia Ten.) Üstün Ağaçlarının Seçiminde 272

BOZKURT, Y. 1971. (b) Önemli Bazı Ağaç Türleri Odunlarının Tanımı, Teknolojik Özellikleri ve Kullanış Yerleri. I. Ü. Orm. Fak. Yayını No: 177

105. ERTEN, P.; ÖNAL, S. 1985. Önemli Bazı Ağaç Türleri ler lomruklar-

125. GEZER, A.; ERKULOĞLU, Ö.S. 1980. Doğu Ladinin Ağaçlandırı

152. KÖSE, Ş. 1964. Meryemana Araştırma Ormanı Florası ve Böcekleri. OGM Teknik Hab. Bül. 10; 34 - 44 s.

159. MUSTAFA, R. 1929. Ladin Ağaçlarına Arız Olan Böcekler (Se­kiz dişli ladin yazıcı böceği). Orman ve Av Derg. Sayı 12, 15 . 16 (Toplam 6 sayfa)

160. MUNİH, R. 1929. Tabii Ormanda Kabuk Böcekleri Hasarları. Or­man ve Av Dergisi Sayı : 12, 3 - 6 s.

177. SAATÇİOĞLU, F. 1971 (a) Orman Bakımı (Meşçere yetişirilmesine ait tedbirler) İ.Ü. Or. Fak. Yayın No: 1636/160

179. SAATÇİOĞLU, F. 1976. (a) Fidanlık Tekniği İ.Ü. Or. Fak. Yayın No: 2188/223

180. SAATÇİOĞLU, F. 1976 (b) Silvikültür I. (Silvikültürün biyolojik esasları ve prensipleri) İ.Ü. Or.Fak. Yayın No: 2187/222.

287

230. YAHYAOGLU, Z.; ATASOY, H. 1983. (b) Ladin (Picea orientalis (L.) Link. de Islah Çalışmaları K.Ü. Or. Fak. Derg. 6, Sayı: 2, 416 - 434 s.

